Publications by authors named "Christian Urich"

More than half of new urban residential developments are planned as infill in Australia's major cities. This provides an unprecedented opportunity to use innovative design and technology to address urban water challenges such as flooding, reduced water security and related infrastructure and urban heat island issues. However, infill can have positive or negative water impacts, depending on architectural design and on-site water servicing technologies implemented.

View Article and Find Full Text PDF

Historically, little consideration has been given to water performance of urban developments such as "hydrological naturalness" or "local water self-sufficiency". This has led to problems with increased stormwater runoff, flooding, and lack of local contributions to urban water security. Architectural design, water servicing technologies and environmental conditions are each known to influence water performance.

View Article and Find Full Text PDF

Instrumentation, control and automation (ICA) are currently applied throughout the urban water system at water treatment plants, in water distribution networks, in sewer networks, and at wastewater treatment plants. However, researchers and practitioners specialising in respective urban water sub-systems do not frequently interact, and in most cases to date the application of ICA has been achieved in silo. Here, we review start-of-the-art ICA throughout these sub-systems, and discuss the benefits achieved in terms of performance improvement, cost reduction, and more importantly, the enhanced capacity of the existing infrastructure to cope with increased service demand caused by population growth and continued urbanisation.

View Article and Find Full Text PDF
Article Synopsis
  • A new model for simulating long-term microbial removal in stormwater biofilters was developed, utilizing a 'three-bucket' approach for water flow and a one-dimensional advection-dispersion equation for microbial transport.
  • The model incorporates key processes like adsorption, desorption, die-off, and includes temperature as a significant factor affecting die-off rates, validated through 44 weeks of data from five different biofilter configurations.
  • Calibration and validation results indicated strong performance, with limitations highlighted in model sensitivity due to potential data shortages, emphasizing the need for more comprehensive data for further refinement.
View Article and Find Full Text PDF

We examine high-resolution urban infrastructure data using every pipe for the water distribution network (WDN) and sanitary sewer network (SSN) in a large Asian city (≈4 million residents) to explore the structure as well as the spatial and temporal evolution of these infrastructure networks. Network data were spatially disaggregated into multiple subnets to examine intracity topological differences for functional zones of the WDN and SSN, and time-stamped SSN data were examined to understand network evolution over several decades as the city expanded. Graphs were generated using a dual-mapping technique (Hierarchical Intersection Continuity Negotiation), which emphasizes the functional attributes of these networks.

View Article and Find Full Text PDF

In contrast to common perceptions, the urban water infrastructure system is a complex and dynamic system that is constantly evolving and adapting to changes in the urban environment, to sustain existing services and provide additional ones. Instead of simplifying urban water infrastructure to a static system that is decoupled from its urban context, new management strategies use the complexity of the system to their advantage by integrating centralised with decentralised solutions and explicitly embedding water systems into their urban form. However, to understand and test possible adaptation strategies, urban water modelling tools are required to support exploration of their effectiveness as the human-technology-environment system coevolves under different future scenarios.

View Article and Find Full Text PDF

Long-term projections for key drivers needed in urban water infrastructure planning such as climate change, population growth, and socio-economic changes are deeply uncertain. Traditional planning approaches heavily rely on these projections, which, if a projection stays unfulfilled, can lead to problematic infrastructure decisions causing high operational costs and/or lock-in effects. New approaches based on exploratory modelling take a fundamentally different view.

View Article and Find Full Text PDF

With global change bringing about greater challenges for the resilient planning and management of urban water infrastructure, research has been invested in the development of a strategic planning tool, DAnCE4Water. The tool models how urban and societal changes impact the development of centralised and decentralised (distributed) water infrastructure. An algorithm for rigorous assessment of suitable decentralised stormwater management options in the model is presented and tested on a local Melbourne catchment.

View Article and Find Full Text PDF