Publications by authors named "Christian Toonstra"

The broadly neutralizing antibody PG9 recognizes a unique glycopeptide epitope in the V1V2 domain of HIV-1 gp120 envelope glycoprotein. The present study describes the design, synthesis, and antibody-binding analysis of HIV-1 V1V2 glycopeptide-Q conjugates as a mimic of the proposed neutralizing epitope of PG9. The glycopeptides were synthesized using a highly efficient chemoenzymatic method.

View Article and Find Full Text PDF

CTLA-4 is an important regulator of T-cell function. Here, we report that expression of this immune-regulator in mouse B-1a cells has a critical function in maintaining self-tolerance by regulating these early-developing B cells that express a repertoire enriched for auto-reactivity. Selective deletion of CTLA-4 from B cells results in mice that spontaneously develop autoantibodies, T follicular helper (Tfh) cells and germinal centers (GCs) in the spleen, and autoimmune pathology later in life.

View Article and Find Full Text PDF

Collagen is a potent agonist for platelet activation, presenting itself as a key contributor to coagulation via interactions with platelet glycoproteins. The fine details dictating platelet-collagen interactions are poorly understood. In particular, glycosylation could be a key determinant in the platelet-collagen interaction.

View Article and Find Full Text PDF

High-mannose-type N-glycans are an important component of neutralizing epitopes on HIV-1 envelope glycoprotein gp120. They also serve as signals for protein folding, trafficking, and degradation in protein quality control. A number of lectins and antibodies recognize high-mannose-type N-glycans, and glycan array technology has provided an avenue to probe these oligomannose-specific proteins.

View Article and Find Full Text PDF

A facile, one-pot enzymatic glycan remodeling of antibody rituximab to produce homogeneous high-mannose and hybrid type antibody glycoforms is described. This method was based on the unique substrate specificity of the endoglycosidase S (Endo-S) from Streptococcus pyogenes. While Endo-S efficiently hydrolyzes the bi-antennary complex type IgG Fc N-glycans, we found that Endo-S did not hydrolyze the "ground state" high-mannose or hybrid glycoforms, and only slowly hydrolyzed the highly activated high-mannose or hybrid N-glycan oxazolines.

View Article and Find Full Text PDF

We describe here the synthesis of novel multivalent HIV V3 domain glycopeptides and their binding to broadly neutralizing antibodies PGT128 and 10-1074. Our binding data reveal a distinct mode of antigen recognition by the two antibodies and further suggest that multivalent glycopeptides could mimic the neutralizing epitopes more efficiently than the monomeric glycopeptide.

View Article and Find Full Text PDF

A class of new glycan-reactive broadly neutralizing antibodies represented by PGT121, 10-1074, and PGT128 has recently been discovered that targets specific N-glycans and the peptide region around the V3 domain. However, the glycan specificity and fine epitopes of these bNAbs remain to be further defined. We report here a systematic chemoenzymatic synthesis of homogeneous V3 glycopeptides derived from the HIV-1 JR-FL strain carrying defined N-glycans at N332, N301, and N295 sites.

View Article and Find Full Text PDF

Mannose-6-phosphate (M6P)-terminated oligosaccharides are important signals for M6P-receptor-mediated targeting of newly synthesized hydrolases from Golgi to lysosomes, but the precise structural requirement for the M6P ligand-receptor recognition has not been fully understood due to the difficulties in obtaining homogeneous M6P-containing glycoproteins. We describe here a chemoenzymatic synthesis of homogeneous phosphoglycoproteins carrying natural M6P-containing N-glycans. The method includes the chemical synthesis of glycan oxazolines with varied number and location of the M6P moieties and their transfer to the GlcNAc-protein by an endoglycosynthase to provide homogeneous M6P-containing glycoproteins.

View Article and Find Full Text PDF

A convergent chemoenzymatic approach for sequential installation of different N-glycans in a polypeptide is described. The method includes introduction of distinguishably protected GlcNAc-Asn building blocks during automated solid phase peptide synthesis (SPPS), followed by orthogonal deprotection of the GlcNAc primers and site-selective sequential extension of the sugar chains through glycosynthase-catalyzed transglycosylation reactions. It was observed that the protecting groups on one neighboring GlcNAc moiety have an impact on the substrate activity of another GlcNAc acceptor toward some endoglycosynthases in transglycosylation.

View Article and Find Full Text PDF

The fine structures of Fc N-glycans can modulate the effector functions of IgG antibodies. It has been demonstrated that lack of the core fucose on the Fc N-glycans leads to drastic enhancement of antibody-dependent cellular cytotoxicity (ADCC), while terminal α2,6-sialylation of Fc glycan plays a critical role for the anti-inflammatory activity of human intravenous immunoglobulin (IVIG). We describe in this paper a highly efficient chemoenzymatic method for site-selective Fc glycoengineering of intact monoclonal antibody and IVIG.

View Article and Find Full Text PDF