Global navigation satellite systems (GNSS) are widely used for navigation and time distribution, features that are indispensable for critical infrastructure such as mobile communication networks, as well as emerging technologies such as automated driving and sustainable energy grids. Although GNSS can provide centimetre-level precision, GNSS receivers are prone to many-metre errors owing to multipath propagation and an obstructed view of the sky, which occur particularly in urban areas where accurate positioning is most needed. Moreover, the vulnerabilities of GNSS, combined with the lack of a back-up system, pose a severe risk to GNSS-dependent technologies.
View Article and Find Full Text PDFSmartphone accelerometers and low-cost Global Navigation Satellite System (GNSS) equipment have faced rapid and important advancement, opening a new door to deformation monitoring applications such as landslide, plate tectonics and structural health monitoring (SHM). The precision potential and operational feasibility of the equipment play an important role in the decision making of campaigning for affordable solutions. This paper focuses on the evaluation of the empirical precision, including (auto)time correlation, of a common smartphone accelerometer (Bosch BMI160) and a low-cost dual frequency GNSS reference-rover pair (u-blox ZED-F9P) set to operate at high rates (50 and 5 Hz, respectively).
View Article and Find Full Text PDFThis paper presents an approach to analyse the quality, in terms of precision and reliability, of a system which integrates-at the observation-level-landmark positions and GNSS measurements, obtained with a single camera and a digital map, and a single frequency GNSS receiver respectively. We illustrate the analysis by means of design computations, and we present the actual performance by means of a small experiment in practice. It is shown that the integration model is able to produce a position solution even when both sensors individually fail to do so.
View Article and Find Full Text PDFGoogle Location Timeline, once activated, allows to track devices and save their locations. This feature might be useful in the future as available data for evidence in investigations. For that, the court would be interested in the reliability of this data.
View Article and Find Full Text PDFAs the navigation solution of exclusion-based RAIM follows from a combination of least-squares estimation and a statistically based exclusion-process, the computation of the integrity of the navigation solution has to take the propagated uncertainty of the combined estimation-testing procedure into account. In this contribution, we analyse, theoretically as well as empirically, the effect that this combination has on the first statistical moment, i.e.
View Article and Find Full Text PDF