The axon initial segment (AIS) constitutes not only the site of action potential initiation, but also a hub for activity-dependent modulation of output generation. Recent studies shedding light on AIS function used predominantly post-hoc approaches since no robust murine live reporters exist. Here, we introduce a reporter line in which the AIS is intrinsically labeled by an ankyrin-G-GFP fusion protein activated by Cre recombinase, tagging the native gene.
View Article and Find Full Text PDFNeurons typically generate action potentials at their axon initial segment based on the integration of synaptic inputs. In many neurons, the axon extends from the soma, equally weighting dendritic inputs. A notable exception is found in a subset of hippocampal pyramidal cells where the axon emerges from a basal dendrite.
View Article and Find Full Text PDFA spinal cord injury (SCI) damages the axonal projections of neurons residing in the neocortex. This axotomy changes cortical excitability and results in dysfunctional activity and output of infragranular cortical layers. Thus, addressing cortical pathophysiology after SCI will be instrumental in promoting recovery.
View Article and Find Full Text PDFInformation processing in neuronal networks involves the recruitment of selected neurons into coordinated spatiotemporal activity patterns. This sparse activation results from widespread synaptic inhibition in conjunction with neuron-specific synaptic excitation. We report the selective recruitment of hippocampal pyramidal cells into patterned network activity.
View Article and Find Full Text PDFBackground: The zinc finger domain containing transcription factor Myt1l is tightly associated with neuronal identity and is the only transcription factor known that is both neuron-specific and expressed in all neuronal subtypes. We identified Myt1l as a powerful reprogramming factor that, in combination with the proneural bHLH factor Ascl1, could induce neuronal fate in fibroblasts. Molecularly, we found it to repress many non-neuronal gene programs, explaining its supportive role to induce and safeguard neuronal identity in combination with proneural bHLH transcriptional activators.
View Article and Find Full Text PDFThe human brain is a complex, three-dimensional structure. To better recapitulate brain complexity, recent efforts have focused on the development of human-specific midbrain organoids. Human iPSC-derived midbrain organoids consist of differentiated and functional neurons, which contain active synapses, as well as astrocytes and oligodendrocytes.
View Article and Find Full Text PDFThe rodent hippocampus expresses a variety of neuronal network oscillations depending on the behavioral state of the animal. Locomotion and active exploration are accompanied by theta-nested gamma oscillations while resting states and slow-wave sleep are dominated by intermittent sharp wave-ripple complexes. It is believed that gamma rhythms create a framework for efficient acquisition of information whereas sharp wave-ripples are thought to be involved in consolidation and retrieval of memory.
View Article and Find Full Text PDFMemories are encoded by memory traces or engrams, represented within subsets of neurons that are synchronously activated during learning. However, the molecular mechanisms that drive engram stabilization during consolidation and consequently ensure its reactivation by memory recall are not fully understood. In this study we manipulate, during memory consolidation, the levels of the de novo DNA methyltransferase 3a2 (Dnmt3a2) selectively within dentate gyrus neurons activated by fear conditioning.
View Article and Find Full Text PDFKey Points: Ectopic action potentials (EAPs) arise at distal locations in axonal fibres and are often associated with neuronal pathologies such as epilepsy or nerve injury, but they also occur during physiological network conditions. This study investigates whether initiation of such EAPs is modulated by subthreshold synaptic activity. Somatic subthreshold potentials invade the axonal compartment to considerable distances (>350 μm), whereas spread of axonal subthreshold potentials to the soma is inefficient.
View Article and Find Full Text PDFNeuronal processing is classically conceptualized as dendritic input, somatic integration, and axonal output. The axon initial segment, the proposed site of action potential generation, usually emanates directly from the soma. However, we found that axons of hippocampal pyramidal cells frequently derive from a basal dendrite rather than from the soma.
View Article and Find Full Text PDF