Background: The aetiology of delirium is not known, but pre-existing cognitive impairment is a predisposing factor. Here we explore the associations between delirium and cerebrospinal fluid (CSF) levels of matrix metalloproteinases (MMPs) and their tissue inhibitors (TIMPs), proteins with important roles in both acute injury and chronic neurodegeneration.
Methods: Using a 13-plex Discovery Assay®, we quantified CSF levels of 9 MMPs and 4 TIMPs in 280 hip fracture patients (140 with delirium), 107 cognitively unimpaired individuals, and 111 patients with Alzheimer's disease dementia.
Alterations in brain energy metabolism have long been proposed as one of several neurobiological processes contributing to delirium. This is supported by previous findings of altered CSF lactate and neuron-specific enolase concentrations and decreased glucose uptake on brain-PET in patients with delirium. Despite this, there are limited data on metabolic alterations found in CSF samples, and targeted metabolic profiling of CSF metabolites involved in energy metabolism has not been performed.
View Article and Find Full Text PDFBACKGROUNDThe kynurenine pathway (KP) has been identified as a potential mediator linking acute illness to cognitive dysfunction by generating neuroactive metabolites in response to inflammation. Delirium (acute confusion) is a common complication of acute illness and is associated with increased risk of dementia and mortality. However, the molecular mechanisms underlying delirium, particularly in relation to the KP, remain elusive.
View Article and Find Full Text PDFBackground: Hip fracture patients are frail and have a high mortality. We investigated whether the introduction of fast track care reduced the 30-day mortality after hip fractures.
Methods: Fast track hip fracture care was established at our institution in October 2013.