Publications by authors named "Christian Thirion"

Respiratory syncytial virus (RSV) is the leading cause of severe lower respiratory tract infections in infants and toddlers. Since natural infections do not induce persistent immunity, there is the need of vaccines providing long-term protection. Here, we evaluated a new adenoviral vector (rAd) vaccine based on the rare serotype rAd19a and compared the immunogenicity and efficacy to the highly immunogenic rAd5.

View Article and Find Full Text PDF

Antibody-mediated complement-dependent cytotoxicity (CDC) on malignant cells is regulated by several complement control proteins, including the inhibitory complement factor H (fH). fH consists of 20 short consensus repeat elements (SCRs) with specific functional domains. Previous research revealed that the fH-derived SCRs 19-20 (SCR1920) can displace full-length fH on the surface of chronic lymphocytic leukemia (CLL) cells, which sensitizes CLL cells for e.

View Article and Find Full Text PDF
Article Synopsis
  • Long-acting passive immunization using AAV vectors may help protect immunosuppressed groups from infectious diseases, especially in the context of COVID-19.
  • Researchers developed AAV vectors with a human neutralizing antibody, TRES6, and tested them in mice, achieving high serum concentrations for up to one year after injection.
  • The study showed that different AAV capsids affected where the antibody was expressed in the body and its ability to bind to immune receptors, leading to effective protection against SARS-CoV-2 infection in the mice.
View Article and Find Full Text PDF

The delivery of vaccines plays a pivotal role in influencing the strength and longevity of the immune response and controlling reactogenicity. Mucosal immunization, as compared to parenteral vaccination, could offer greater protection against respiratory infections while being less invasive. While oral vaccination has been presumed less effective and believed to target mainly the gastrointestinal tract, trans-buccal delivery using mucoadhesive films (MAF) may allow targeted delivery to the mucosa.

View Article and Find Full Text PDF
Article Synopsis
  • Drug-based antiretroviral therapies (ART) effectively control HIV replication but can't eliminate the virus since it remains as integrated proviral reservoirs in cells.
  • Genome editing tools like the HIV-1 LTR-specific designer-recombinase Brec1 show promise in removing these integrated HIV genomes, indicating potential for curative therapies.
  • A comprehensive preclinical study of Brec1 demonstrated it has minimal safety risks, including no harmful immune responses, making it a suitable candidate for future clinical trials aimed at eradicating HIV-1.
View Article and Find Full Text PDF

Modified vaccinia virus Ankara is a versatile vaccine vector, well suited for transgene delivery, with an excellent safety profile. However, certain transgenes render recombinant MVA (rMVA) genetically unstable, leading to the accumulation of mutated rMVA with impaired transgene expression. This represents a major challenge for upscaling and manufacturing of rMVA vaccines.

View Article and Find Full Text PDF

Persistent human papillomavirus (HPV) infection is responsible for practically all cervical and a high proportion of anogenital and oropharyngeal cancers. Therapeutic HPV vaccines in clinical development show great promise in improving outcomes for patients who mount an anti-HPV T-cell response; however, far from all patients elicit a sufficient immunological response. This demonstrates a translational gap between animal models and human patients.

View Article and Find Full Text PDF

Human endogenous retrovirus type W (HERV-W) is expressed in various cancers. We previously developed an adenovirus-vectored cancer vaccine targeting HERV-W by encoding an assembled HERV-W group-specific antigen sequence and the HERV-W envelope sequence Syncytin-1. Syncytin-1 is constitutively fusogenic and forms large multinucleated cell fusions when overexpressed.

View Article and Find Full Text PDF

Expression of human endogenous retrovirus type W (HERV-W) has been linked to cancer, making HERV-W antigens potential targets for therapeutic cancer vaccines. In a previous study, we effectively treated established tumours in mice by using adenoviral-vectored vaccines targeting the murine endogenous retrovirus envelope and group-specific antigen (Gag) of melanoma-associated retrovirus (MelARV) in combination with anti-PD-1. To break the immunological tolerance to MelARV, we mutated the immunosuppressive domain (ISD) of the MelARV envelope.

View Article and Find Full Text PDF

T cell responses directed against highly conserved viral proteins contribute to the clearance of the influenza virus and confer broadly cross-reactive and protective immune responses against a range of influenza viruses in mice and ferrets. We examined the protective efficacy of mucosal delivery of adenoviral vectors expressing hemagglutinin (HA) and nucleoprotein (NP) from the H1N1 virus against heterologous H3N2 challenge in pigs. We also evaluated the effect of mucosal co-delivery of IL-1β, which significantly increased antibody and T cell responses in inbred Babraham pigs.

View Article and Find Full Text PDF

Endogenous retroviruses (ERVs) account for 8% of our genome, and, although they are usually silent in healthy tissues, they become reactivated and expressed in pathological conditions such as cancer. Several studies support a functional role of ERVs in tumour development and progression, specifically through their envelope (Env) protein, which contains a region described as an immunosuppressive domain (ISD). We have previously shown that targeting of the murine ERV (MelARV) Env using virus-like vaccine (VLV) technology, consisting of an adenoviral vector encoding virus-like particles (VLPs), induces protection against small tumours in mice.

View Article and Find Full Text PDF

Human papillomavirus (HPV) infections are the main cause of cervical and oropharyngeal cancers. As prophylactic vaccines have no curative effect, an efficient therapy would be highly desired. Most therapeutic vaccine candidates target only a small subset of HPV regulatory proteins, namely, E6 and E7, and are therefore restricted in the breadth of their immune response.

View Article and Find Full Text PDF

Human adipose-derived stem cells (hADSCs) have the capacity for osteogenic differentiation and, in combination with suitable biomaterials and growth factors, the regeneration of bone defects. In order to differentiate hADSCs into the osteogenic lineage, bone morphogenetic proteins (BMPs) have been proven to be highly effective, especially when expressed locally by route of gene transfer, providing a constant stimulus over an extended period of time. However, the creation of genetically modified hADSCs is laborious and time-consuming, which hinders clinical translation of the approach.

View Article and Find Full Text PDF

Due to their ability to trigger strong immune responses, adenoviruses (HAdVs) in general and the serotype5 (HAdV-5) in particular are amongst the most popular viral vectors in research and clinical application. However, efficient transduction using HAdV-5 is predominantly achieved in coxsackie and adenovirus receptor (CAR)-positive cells. In the present study, we used the transduction enhancer LentiBOOST comprising the polycationic Polybrene to overcome these limitations.

View Article and Find Full Text PDF

Several effective SARS-CoV-2 vaccines are currently in use, but effective boosters are needed to maintain or increase immunity due to waning responses and the emergence of novel variants. Here we report that intranasal vaccinations with adenovirus 5 and 19a vectored vaccines following a systemic plasmid DNA or mRNA priming result in systemic and mucosal immunity in mice. In contrast to two intramuscular applications of an mRNA vaccine, intranasal boosts with adenoviral vectors induce high levels of mucosal IgA and lung-resident memory T cells (T); mucosal neutralization of virus variants of concern is also enhanced.

View Article and Find Full Text PDF

Persistent human papillomavirus (HPV) infections are causative for cervical neoplasia and carcinomas. Despite the availability of prophylactic vaccines, morbidity and mortality induced by HPV are still too high. Thus, an efficient therapy, such as a therapeutic vaccine, is urgently required.

View Article and Find Full Text PDF

Infections with human herpesviruses share several molecular characteristics, but the diversified medical outcomes are distinct to viral subfamilies and species. Notably, both clinical and molecular correlates of infection are a challenging field and distinct patterns of virus-host interaction have rarely been defined; this study therefore focuses on the search for virus-specific molecular indicators. As previous studies have demonstrated the impact of herpesvirus infections on changes in host signalling pathways, we illustrate virus-modulated expression levels of individual cellular protein kinases.

View Article and Find Full Text PDF

Introduction of a tumor antigen-specific T cell receptor (TCR) into patient-derived lymphocytes has already exhibited promising results for the treatment of melanoma and other malignancies in clinical trials. However, insufficient or unsuccessful ex vivo manufacturing of engineered T cells due to low expansion and/or transduction rate can still be observed in some patients. Thus, we isolated human CD8 T cells from healthy donors and equipped them with a gp100-specific TCR using a lentiviral construct in combination with a novel chemical lentiviral transduction enhancer (Lentiboost) to increase the rate of transduced cells.

View Article and Find Full Text PDF

Endogenous retroviruses (ERVs) that make up 8% of the human genome have been associated with the development and progression of cancer. The murine model system of the melanoma associated retrovirus (MelARV), which is expressed in different murine cancer cell lines, can be used to study mechanisms and therapeutic approaches against ERVs in cancer. We designed a vaccine strategy (Ad5-MelARV) of adenoviruses encoding the MelARV proteins Gag and Env that assemble into virus-like particles displaying the cancer-associated MelARV Env to the immune system.

View Article and Find Full Text PDF

Cost-effective, expedited approaches for bone regeneration are urgently needed in an ageing population. Bone Morphogenetic Proteins (BMPs) stimulate osteogenesis but their efficacy is impeded by their short half-life. Delivery by genetically modified cells can overcome this problem.

View Article and Find Full Text PDF

Bone can be engineered in vivo by implantation of gene-activated muscle tissue fragments. This expedited approach may be further improved by use of muscle tissue with attached fascia. The aim of this in vitro study was to provide an in depth comparison of the osteogenic differentiation capacity of muscle alone and muscle with fascia after BMP-2 transduction.

View Article and Find Full Text PDF

The human adenovirus type 19a/64 (hAd19a) is a rare serotype in the human population that transduces human dendritic cells (DCs) and human muscle cells more efficiently than the well-characterized human adenovirus type 5 (hAd5). To further characterize the potential of this vector as a vaccine we designed replication deficient hAd19a, hAd5 and MVA vectors expressing a papillomavirus (PV) antigen fused to the human MHC class II associated invariant chain T cell adjuvant (hIi) and investigated their immunogenicity in vivo in mice and cynomolgus macaques. We initially showed that the hIi encoded in the hAd5 enhanced PV specific CD8+ T cell responses in mice.

View Article and Find Full Text PDF

The delivery of therapeutic genes for treatment of inherited or infectious diseases frequently requires lentiviral transduction of CD34 hematopoietic stem and progenitor cells (HSC). Optimized transduction protocols with a therapeutic goal aim to maximize the number of transduction-positive cells while limiting the vector copy number that reach each individual cell. Importantly, the transduced HSC should maintain their "stem-like" properties.

View Article and Find Full Text PDF

Since preexisting immunity and enhanced infection rates in a clinical trial of an HIV vaccine have raised some concerns on adenovirus (Ad) serotype 5-based vaccines, we evaluated the subgroup D adenovirus serotype Ad19a for its suitability as novel viral vector vaccine against mucosal infections. In BALB/c mice, we compared the immunogenicity and efficacy of E1/E3-deleted Ad19a vectors encoding the influenza A virus (IAV)-derived antigens hemagglutinin (HA) and nucleoprotein (NP) to the most commonly used Ad5 vectors. The adenoviral vectors were applied intranasally and induced detectable antigen-specific T cell responses in the lung and in the spleen as well as robust antibody responses.

View Article and Find Full Text PDF

Human Cytomegalovirus (HCMV) remains a major health burden and the development of a vaccine is a global priority. We developed new viral vectors delivering the T cell immunogens IE-1 and pp65 based on Adenovirus 19a/64 (Ad19a/64), a member of subgroup D. In this ex vivo study, the novel vectors were compared side by side to Ad5 or modified Vaccinia Ankara (MVA) strains expressing the same transgenes.

View Article and Find Full Text PDF