Publications by authors named "Christian T Sheline"

Zinc (Zn) is involved in both type 1 diabetes (T1DM) and type 2 diabetes (T2DM). The wild-type (WT) form of the β-cell-specific Zn transporter, ZNT8, is linked to T2DM susceptibility. ZnT8 null mice have a mild phenotype with a slight decrease in glucose tolerance, whereas patients with the ZnT8 R325W polymorphism (rs13266634) have decreased proinsulin staining and susceptibility to T2DM.

View Article and Find Full Text PDF

Unlabelled: Zn toxicity is implicated in pancreatic β-cell death that occurs secondarily to: streptozotocin exposure ; and both autoimmune attack or streptozotocin models of T1DM. This is demonstrated by reduced β-cell death or diabetic incidence in vitro or in NOD mice after treatment with Zn preferring chelators, pyruvate, nicotinamide, a reduced zinc diet, sirtuin inhibitors, or zinc transporter knockout. These therapeutics are also demonstrated to be efficacious against Zn neurotoxicity.

View Article and Find Full Text PDF

We examined the impact of intracellular dialysis on fluorescence detection of neuronal intracellular Zn(2+) accumulation. Comparison between two dialysis conditions (standard; 20 min, brief; 2 min) by standard whole-cell clamp revealed a high vulnerability of intracellular Zn(2+) buffers to intracellular dialysis. Thus, low concentrations of zinc-pyrithione generated robust responses in neurons with standard dialysis, but signals were smaller in neurons with short dialysis.

View Article and Find Full Text PDF

Spreading depolarization (SD) is a feed-forward wave that propagates slowly throughout brain tissue and recovery from SD involves substantial metabolic demand. Presynaptic Zn(2+) release and intracellular accumulation occurs with SD, and elevated intracellular Zn(2+) ([Zn(2+) ]i ) can impair cellular metabolism through multiple pathways. We tested here whether increased [Zn(2+) ]i could exacerbate the metabolic challenge of SD, induced by KCl, and delay recovery in acute murine hippocampal slices.

View Article and Find Full Text PDF

Our previous study on retinal light exposure suggests the involvement of zinc (Zn(2+)) toxicity in the death of RPE and photoreceptors (LD) which could be attenuated by pyruvate and nicotinamide, perhaps through restoration of NAD(+) levels. In the present study, we examined Zn(2+) toxicity, and the effects of NAD(+) restoration in primary retinal cultures. We then reduced Zn(2+) levels in rodents by reducing Zn(2+) levels in the diet, or by genetics and measured LD.

View Article and Find Full Text PDF

Light-induced retinal damage (LD) occurs after surgery or sun exposure. We previously showed that zinc (Zn(2+)) accumulated in photoreceptors and RPE cells after LD but prior to cell death, and pyruvate or nicotinamide attenuated the resultant death perhaps by restoring nicotinamide adenine dinucleotide (NAD(+)) levels. We first examined the levels of NAD(+) and the efficacy of pyruvate or nicotinamide in oxidative toxicities using primary retinal cultures.

View Article and Find Full Text PDF

Pancreatic zinc (Zn(2+)) concentrations are linked to diabetes and pancreatic dysfunction, but Zn(2+) is also required for insulin processing and packaging. Zn(2+) released with insulin increases β-cell pancreatic death after streptozotocin toxin exposure in vitro and in vivo. Triosephosphate accumulation, caused by NAD(+) loss and glycolytic enzyme dysfunction, occur in type-1 diabetics (T1DM) and animal models.

View Article and Find Full Text PDF

Background: Inhibition of mitochondrial function occurs in many neurodegenerative diseases, and inhibitors of mitochondrial complexes I and II are used to model them. The complex II inhibitor, 3-nitroproprionic acid (3-NPA), kills the striatal neurons susceptible in Huntington's disease. The complex I inhibitor N-methyl-4-phenylpyridium (MPP(+)) and 6-hydroxydopamine (6-OHDA) are used to model Parkinson's disease.

View Article and Find Full Text PDF

Cortical spreading depression (CSD) is a consequence of a slowly propagating wave of neuronal and glial depolarization (spreading depolarization; SD). Massive release of glutamate contributes to SD propagation, and it was recently shown that Zn(2+) is also released from synaptic vesicles during SD. The present study examined consequences of extracellular Zn(2+) accumulation on the propagation of SD.

View Article and Find Full Text PDF

Background: Wilson's disease is caused by a genetic defect in P-type Cu(2+)-ATPase (Atp7b), resulting in Cu(2+) accumulation in the liver, toxicity, and hepatocellular carcinoma. Exposure of HepG2 cells, and livers of Atp7b mutant mice to toxic Cu(2+) resulted in oxidation, (KGDH) and (PDH) enzyme inhibition, and death that was attenuated by thiamine.

Materials And Methods: The effect of oral thiamine supplementation (2%) on hepatocellular carcinoma induced by Cu(2+) accumulation in the livers of Atp7b animals at 4, 6, 9, 12, 16, and 21 months was demonstrated using gross morphology and multi-nucleate analysis.

View Article and Find Full Text PDF

Purpose: Light-induced damage can be a problem after surgery or sun exposure. Short-duration, intense light causes preferential photoreceptor death in the superior central retina of albino mice and rats and serves as a model of oxidation-induced neurodegeneration. Previous work on retinal ischemia-induced neuronal death suggests the involvement of zinc (Zn(2+)) toxicity in the death and collapse of many retinal cell layers and demonstrates the protective efficacy of pyruvate.

View Article and Find Full Text PDF

Spreading depression (SD) involves coordinated depolarizations of neurons and glia that propagate through the brain tissue. Repetitive SD-like events are common following human ischemic strokes, and are believed to contribute to the enlargement of infarct volume. Accumulation of Zn(2+) is also implicated in ischemic neuronal injury.

View Article and Find Full Text PDF

Background: The zinc transporter ZIP4 (Slc39a4) is important for proper mammalian development and is an essential gene in mice. Recent studies suggest that this gene may also play a role in pancreatic cancer.

Methods/principal Findings: Herein, we present evidence that this essential zinc transporter is expressed in hepatocellular carcinomas.

View Article and Find Full Text PDF

Trophic deprivation-mediated neuronal death is important during development, after acute brain or nerve trauma, and in neurodegeneration. Serum deprivation (SD) approximates trophic deprivation in vitro, and an in vivo model is provided by neuronal death in the mouse dorsal lateral geniculate nucleus (LGNd) after ablation of the visual cortex (VCA). Oxidant-induced intracellular Zn(2+) release ([Zn(2+) ](i) ) from metallothionein-3 (MT-III), mitochondria or 'protein Zn(2+) ', was implicated in trophic deprivation neurotoxicity.

View Article and Find Full Text PDF

In the adult brain, neurogenesis occurs in the subgranular zone of the dentate gyrus (DG), where high levels of vesicular zinc are localized in the presynaptic terminals. To determine whether zinc has a role in modulating hippocampal neurogenesis under normal or pathologic conditions, we manipulated the level of vesicular zinc experimentally. To reduce hippocampal vesicular zinc, rats were either fed a zinc-deficient diet or treated with a zinc chelator, clioquinol (CQ).

View Article and Find Full Text PDF

Oxidative stress and zinc release are both known to contribute to neuronal death after hypoglycemia; however, the cause-effect relationships between these events are not established. Here we found, using a rat model of profound hypoglycemia, that the neuronal zinc release and translocation that occur immediately after hypoglycemia are prevented by the nitric oxide synthase inhibitor 7-nitroindazole but not by overexpression of superoxide dismutase-1 (SOD-1). However, overexpression of SOD-1 prevented activation of poly(ADP-ribose) polymerase-1 (PARP-1) and neuronal death, suggesting that zinc release is upstream of superoxide production.

View Article and Find Full Text PDF

Zinc neurotoxicity has been demonstrated in ischemic, seizure, hypoglycemic, and trauma-induced neuronal death where Zn(2+) is thought to be synaptically released and taken up in neighbouring neurons, reaching toxic concentrations. We previously demonstrated that toxicity of extracellular Zn(2+) depended on entry, elevation in intracellular free Zn(2+) ([Zn(2+)](i)), a reduction in NAD(+) and ATP levels, and dysfunction of glycolysis and cellular metabolism. We suggested that PARP-1 activation alone can not explain this loss of neuronal NAD(+).

View Article and Find Full Text PDF

Wilson's disease results from mutations in the P-type Cu(2+)-ATPase causing Cu(2+) toxicity. We previously demonstrated that exposure of mixed neuronal/glial cultures to 20 microM Cu(2+) induced ATP loss and death that were attenuated by mitochondrial substrates, activators, and cofactors. Here, we show differential cellular sensitivity to Cu(2+) that was equalized to 5 microM in the presence of the copper exchanger/ionophore, disulfiram.

View Article and Find Full Text PDF

Transient global ischemia induces CA1 hippocampal neuronal death without astrocyte death, perhaps mediated in part by the toxic translocation of zinc from presynaptic terminals to postsynaptic neurons. We tested the hypothesis that cellular depolarization, which occurs in the ischemic brain due to increased extracellular potassium and energy failure, might contribute to astrocyte resistance to zinc-induced death. We previously reported that neurons in mixed cortical neuronal-astrocyte cultures were more vulnerable to a 5-15-min exposure to Zn(2+) than astrocytes in the same cultures.

View Article and Find Full Text PDF

We have previously suggested that zinc-induced neuronal death may be mediated in part by inhibition of the glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase (GAPDH), secondary to depletion of the essential cosubstrate NAD+. Given convergent evidence implicating the NAD+-catabolizing enzyme, poly ADP ribosyl polymerase (PARP) in mediating ATP depletion and neuronal death after excitotoxic and ischemic insults, we tested the specific hypothesis that the neuronal death induced by exposure to toxic levels of extracellular zinc might be partly mediated by PARP. PARP was activated in cultured mouse cortical astrocytes after a toxic acute Zn2+ exposure (350 microm Zn2+ for 15 min), but not in cortical neurons or glia after exposure to a toxic chronic Zn2+ exposure (40 microm Zn2+ for 1-4 h), an exposure sufficient to deplete NAD+ and ATP levels.

View Article and Find Full Text PDF

Chelating extracellular Zn(2+) with the membrane-impermeant Zn(2+) chelator, CaEDTA, can inhibit toxic Zn(2+) influx and subsequent neuronal death. However, this drug does not cross the blood-brain barrier. In the present study, we explored the ability of two membrane-permeant Zn(2+) chelators to inhibit Zn(2+)-induced death of cultured cortical neurons.

View Article and Find Full Text PDF

Copper toxicity contributes to neuronal death in Wilson's disease and has been speculatively linked to the pathogenesis of Alzheimer's and prion diseases. We examined copper-induced neuronal death with the goal of developing neuroprotective strategies. Copper catalyzed an increase in hydroxyl radical generation in solution, and the addition of 20 microM copper for 22 hours to murine neocortical cell cultures induced a decrease in ATP levels and neuronal death without glial death.

View Article and Find Full Text PDF

Toxic Zn(2+) influx may be a key mechanism underlying selective neuronal death after transient global ischemia in rats. To identify routes responsible for neuronal Zn(2+) influx, we measured the accumulation of (65)Zn(2+) into cultured murine cortical cells under depolarizing conditions (60 mM K(+)) associated with severe hypoxia-ischemia in brain tissue. Addition of 60 mM K(+) or 300 microM kainate substantially increased (65)Zn(2+) accumulation into mixed cultures of neurons and glia, but not glia alone.

View Article and Find Full Text PDF