Exercise profoundly influences glycemic control by enhancing muscle insulin sensitivity, thus promoting glucometabolic health. While prior glycogen breakdown so far has been deemed integral for muscle insulin sensitivity to be potentiated by exercise, the mechanisms underlying this phenomenon remain enigmatic. We have combined original data from 13 of our studies that investigated insulin action in skeletal muscle either under rested conditions or following a bout of one-legged knee extensor exercise in healthy young male individuals (n = 106).
View Article and Find Full Text PDFOvernutrition is the principal cause of insulin resistance (IR) and dyslipidemia, which drive nonalcoholic fatty liver disease (NAFLD). Overnutrition is further linked to disrupted bowel function, microbiota alterations, and change of function in gut-lining cell populations, including Paneth cells of the small intestine. Paneth cells regulate microbial diversity through expression of antimicrobial peptides, particularly human α-defensin-5 (HD-5), and have shown repressed secretory capacity in human obesity.
View Article and Find Full Text PDFObjective: The growth differentiation factor 15 (GDF15) is a stress-sensitive circulating factor that regulates systemic energy balance. Since exercise is a transient physiological stress that has pleiotropic effects on whole-body energy metabolism, we herein explored the effect of exercise on a) circulating GDF15 levels and b) GDF15 release from skeletal muscle in humans.
Methods: Seven healthy males either rested or exercised at 67% of their VO for 1 h and blood was sampled from the femoral artery and femoral vein before, during, and after exercise.