Understanding and controlling microbial adhesion is a critical challenge in biomedical research, given the profound impact of bacterial infections on global health. Many facets of bacterial adhesion, including the distribution of adhesion forces across the cell wall, remain poorly understood. While a recent 'patchy colloid' model has shed light on adhesion in Gram-negative cells, a corresponding model for Gram-positive cells has been elusive.
View Article and Find Full Text PDFResearch into materials for medical application draws inspiration from naturally occurring or synthesized surfaces, just like many other research directions. For medical application of materials, particular attention has to be paid to biocompatibility, osseointegration, and bacterial adhesion behavior. To understand their properties and behavior, experimental studies with natural materials such as teeth are strongly required.
View Article and Find Full Text PDFThe adhesion of to abiotic surfaces is crucial for establishing device-related infections. With a high number of single-cell force spectroscopy measurements with genetically modified cells, this study provides insights into the adhesion process of the pathogen to abiotic surfaces of different wettability. Our results show that utilizes different cell wall molecules and interaction mechanisms when binding to hydrophobic and hydrophilic surfaces.
View Article and Find Full Text PDFStaphylococcus aureus is a common cause of catheter-related blood stream infections (CRBSI). The bacterium has the ability to form multilayered biofilms on implanted material, which usually requires the removal of the implanted medical device. A first major step of this biofilm formation is the initial adhesion of the bacterium to the artificial surface.
View Article and Find Full Text PDFSurface patterning in the micro- and nanometer-range by means of pulsed laser interference has repeatedly proven to be a versatile tool for surface functionalization. With these techniques, however, the surface is often changed not only in terms of morphology but also in terms of surface chemistry. In this study, we present an in-depth investigation of the chemical surface modification occurring during surface patterning of copper by ultrashort pulsed direct laser interference patterning (USP-DLIP).
View Article and Find Full Text PDF-related bloodstream infections are often associated with infected central venous catheters (CVC) triggered by microbial adhesion and biofilm formation. We utilized single-cell force spectroscopy (SCFS) and flow chamber models to investigate the adhesion behavior of yeast cells and germinated cells to naïve and human blood plasma (HBP)-coated CVC tubing. Germinated cells demonstrated up to 56.
View Article and Find Full Text PDFData presented in this article describe bacterial and fungal repellent properties of 2D-films and 3D-hydrogels made of different recombinantly produced spider silk proteins based on consensus sequences of Araneus diadematus dragline silk proteins (fibroin 3 and 4). Here, the attachment, growth, and microbial colonization of Streptococcus mutans (S. mutans) as well as Candida albicans (C.
View Article and Find Full Text PDFBacterial adhesion to surfaces is a crucial step in initial biofilm formation. In a combined experimental and computational approach, we studied the adhesion of the pathogenic bacterium Staphylococcus aureus to hydrophilic and hydrophobic surfaces. We used atomic force microscopy-based single-cell force spectroscopy and Monte Carlo simulations to investigate the similarities and differences of adhesion to hydrophilic and hydrophobic surfaces.
View Article and Find Full Text PDFInvasion and persistence of bacteria within host cells requires that they adapt to life in an intracellular environment. This adaptation induces bacterial stress through events such as phagocytosis and enhanced nutrient-restriction. During stress, bacteria synthesize a family of proteins known as heat shock proteins (HSPs) to facilitate adaptation and survival.
View Article and Find Full Text PDFMicrobial adhesion and the subsequent formation of resilient biofilms at surfaces are decisively influenced by substrate properties, such as the topography. To date, studies that quantitatively link surface topography and bacterial adhesion are scarce, as both are not straightforward to quantify. To fill this gap, surface morphometry combined with single-cell force spectroscopy was performed on surfaces with irregular topographies on the nano-scale.
View Article and Find Full Text PDFThe etching behavior of polycrystalline synthetic hydroxyapatite samples has been evaluated to explore the protective impact of fluoride on a tooth-like model system. Etching rates before and after fluoridation with a NaF solution at pH 6 were determined by atomic force microscopy. Despite a very low F concentration of ca.
View Article and Find Full Text PDFBacterial adhesion is a crucial step during the development of infections as well as the formation of biofilms. Hence, fundamental research of bacterial adhesion mechanisms is of utmost importance. So far, less is known about the size of the contact area between bacterial cells and a surface.
View Article and Find Full Text PDFStreptococcus mutans cells form robust biofilms on human teeth and are strongly related to caries incidents. Hence, understanding the adhesion of S. mutans in the human oral cavity is of major interest for preventive dentistry.
View Article and Find Full Text PDFHydroxyapatite substrates are common biomaterials, yet samples of natural teeth do not meet the demands for well-defined, highly reproducible properties. Pellets of hydroxyapatite were produced via the field assisted sintering technology (FAST) as well as via pressureless sintering (PLS). The applied synthesis routes provide samples of very high density (95%-99% of the crystallographic density) and of very low surface roughness (lower than 1 nm when averaged per 1 μm).
View Article and Find Full Text PDFIncreased molecular understanding of multifactorial diseases paves the way for novel therapeutic approaches requiring sophisticated carriers for intracellular delivery of actives. We designed and characterized self-assembling lipid-core nanocapsules for coencapsulation of two poorly soluble natural polyphenols curcumin and resveratrol. The polyphenols were identified as high-potential therapeutic candidates intervening in the intracellular inflammation cascade of chondrocytes during the progress of osteoarthritis.
View Article and Find Full Text PDFThe atomic force microscope (AFM) evolved as a standard device in modern microbiological research. However, its capability as a sophisticated force sensor is not used to its full capacity. The AFM turns into a unique tool for quantitative adhesion research in bacteriology by using "bacterial probes".
View Article and Find Full Text PDF