Publications by authors named "Christian Savard"

The bovine respiratory disease complex (BRD) is a multifactorial disease caused by various bacterial and viral pathogens. Using rapid pathogen detection techniques is helpful for tailoring therapeutic and preventive strategies in affected animals and herds. The objective of this study was to report the frequency of 10 pathogens by multiplex RT-qPCR on samples submitted for BRD diagnosis to a diagnostic laboratory (Biovet Inc.

View Article and Find Full Text PDF

is a new genus in the family. Boosepiviruses (BooVs) are genetically classified into three species: A, B, and C. Initially, A and B were identified in cattle, whereas C was detected in sheep.

View Article and Find Full Text PDF

Surveillance data for Ancylostoma spp. and the A. caninum benzimidazole treatment resistance associated F167Y polymorphism using molecular diagnostics was obtained in a large population of dogs from the United States and Canada.

View Article and Find Full Text PDF

Background: For decades, zinc sulfate centrifugal fecal flotation microscopy (ZCF) has been the mainstay technique for gastrointestinal (GI) parasite screening at veterinary clinics and laboratories. Elsewhere, PCR has replaced microscopy because of generally increased sensitivity and detection capabilities; however, until recently it has been unavailable commercially. Therefore, the primary aim of this study was to compare the performance of real-time PCR (qPCR) and ZCF for fecal parasite screening.

View Article and Find Full Text PDF

Background: Anthelmintic resistance to benzimidazole has been detected in the canine hookworm, Ancylostoma caninum. Benzimidazole resistance is believed to have developed originally in greyhounds, but has also been detected in non-greyhound pet dogs. The aim of this study was to validate a probe-based allele-specific real-time PCR tests for the F167Y polymorphism on the β-tubulin isotype-1 gene and to determine the geographic distribution.

View Article and Find Full Text PDF

Zearalenone (ZEA) is a non-steroidal xenoestrogen mycotoxin produced by many fungal species, which are common contaminants of cereal crops destined for worldwide human and animal consumption. ZEA has been reported in various male reproduction dysfonctions, including decreased fertility potential. In this report, the direct effect of ZEA on the immature Sertoli TM4 cell line was evaluated.

View Article and Find Full Text PDF

Bovine coronavirus (BCoV) is associated with three distinct clinical syndromes in cattle that is, neonatal diarrhoea, haemorrhagic diarrhoea in adults (the so-called winter dysentery syndrome, WD) and respiratory infections in cattle of different ages. In addition, bovine-like CoVs have been detected in various species including domestic and wild ruminants. However, bovine-like CoVs have not been reported so far in odd-toed ungulates.

View Article and Find Full Text PDF

Kobuviruses are known to infect the gastrointestinal tract of different animal species. Since its discovery in 2003, bovine kobuvirus (BKV) has been identified in faecal samples from diarrhoeic cattle in many countries, but only recently in North America. Although its possible role as an agent of calf diarrhoea remains to be determined, evidence is mounting.

View Article and Find Full Text PDF

Background: Influenza D virus (IDV), a segmented single-stranded negative-sense ribonucleic acid (RNA) virus, belongs to the new Delta influenza virus genus of the Orthomyxoviridae family. Cattle were proposed as the natural reservoir of IDV in which infection was associated with mild-to-moderate respiratory clinical signs (i.e.

View Article and Find Full Text PDF

The worldwide contamination of grains designated to human and animal feeding with Fusarium mycotoxins is a significant problem. Among Fusarium mycotoxins, deoxynivalenol (DON) and zearalenone (ZEA) are the most prevalent mycotoxins found in cereals. Co-occurrence of DON and ZEA is also very frequent and indicates that these mycotoxins might be involved in a wide range of synergistic or additive interactions.

View Article and Find Full Text PDF

Vaccination is a useful option to control infection with porcine reproductive and respiratory syndrome virus (PRRSV), and several modified live-PRRSV vaccines have been developed. These vaccines have shown some efficacy in reducing the incidence and severity of clinical disease as well as the duration of viremia and virus shedding but have failed to provide sterilizing immunity. The efficacy of modified live-virus (MLV) vaccines is greater against a homologous strain compared with heterologous PRRSV strains.

View Article and Find Full Text PDF

Cereal commodities are frequently contaminated with mycotoxins produced by the secondary metabolism of fungal infection. Among these contaminants, deoxynivalenol (DON), also known as vomitoxin, is the most prevalent type B trichothecene mycotoxin worldwide. Pigs are very sensitive to the toxic effects of DON and are frequently exposed to naturally contaminated feed.

View Article and Find Full Text PDF

Deoxynivalenol (DON) is a mycotoxin produced by Fusarium spp and is a common contaminant of grains in North America. Among farm animals, swine are the most susceptible to DON because it markedly reduces feed intake and decreases weight gain. Porcine circovirus type 2 (PCV2) is the main causative agent of several syndromes in weaning piglets collectively known as porcine circovirus-associated disease (PCVAD).

View Article and Find Full Text PDF

This study was performed to characterize the influence of consuming DON naturally contaminated feeds on pig's intestinal immune defenses, antibody response and cellular immunity. Sixteen 4-week-old piglets were randomly allocated to two dietary treatments: control diet or diet contaminated with 3.5 mg DON/kg.

View Article and Find Full Text PDF

Deoxynivalenol (DON), also known as vomitoxin, is the most prevalent type B trichothecene mycotoxin worldwide. Pigs show a great sensitivity to DON, and because of the high proportion of grains in their diets, they are frequently exposed to this mycotoxin. The objective of this study was to determine the impact of DON naturally contaminated feed on porcine reproductive and respiratory syndrome virus (PRRSV) infection, the most important porcine viral pathogen in swine.

View Article and Find Full Text PDF

Background: Swine influenza is a highly contagious viral infection in pigs affecting the respiratory tract that can have significant economic impacts. Streptococcus suis serotype 2 is one of the most important post-weaning bacterial pathogens in swine causing different infections, including pneumonia. Both pathogens are important contributors to the porcine respiratory disease complex.

View Article and Find Full Text PDF

Deoxynivalenol (DON) is a mycotoxin produced by Fusarium spp. Among monogastric farm animals, swine are the most susceptible to DON as it markedly reduces feed intake and decreases weight gain. DON has also been shown to increase susceptibility to viral infections; therefore the objective of this study was to investigate in vitro impact of DON on porcine reproductive and respiratory syndrome virus (PRRSV).

View Article and Find Full Text PDF

Streptococcus suis serotype 2 is an important swine bacterial pathogen, and it is also an emerging zoonotic agent. It is unknown how S. suis virulent strains, which are usually found in low quantities in pig tonsils, manage to cross the first host defense lines to initiate systemic disease.

View Article and Find Full Text PDF

The principal caveat of existing influenza vaccine is their failure to provide long-term protection. This lack of efficiency is caused by persistent (drift) and dramatic (shift) antigenic changes on the major surface proteins, the main target of protective immunity generated by traditional vaccines. Alternatively, vaccination with most conserved protein, like the nucleoprotein (NP) can stimulate immunity against multiple serotypes and could potentially provides an extended protection.

View Article and Find Full Text PDF

Commercial seasonal flu vaccines induce production of antibodies directed mostly towards hemaglutinin (HA). Because HA changes rapidly in the circulating virus, the protection remains partial. Several conserved viral proteins, e.

View Article and Find Full Text PDF

Hepatitis C virus core protein is the viral nucleocapsid of hepatitis C virus. Interaction of core with cellular membranes like endoplasmic reticulum (ER) and lipid droplets (LD) appears to be involved in viral assembly. However, how these interactions with different cellular membranes are regulated is not well understood.

View Article and Find Full Text PDF

Hepatitis C virus core protein plays an important role in the assembly and packaging of the viral genome. We have studied the structure of the N-terminal half of the core protein (C82) which was shown to be sufficient for the formation of nucleocapsid-like particle (NLP) in vitro and in yeast. Structural bioinformatics analysis of C82 suggests that it is mostly unstructured.

View Article and Find Full Text PDF

With the emergence of highly virulent influenza viruses and the consequent risk of pandemics, new approaches to designing universal influenza vaccines are urgently needed. In this report, we demonstrate the potential of using a papaya mosaic virus (PapMV) platform carrying the universal M2e influenza epitope (PapMV-CP-M2e) as a candidate flu vaccine. We show that PapMV-CP-M2e virus-like particles (VLPs) can induce production in mice of anti-M2e antibodies that can recognize influenza-infected cells.

View Article and Find Full Text PDF

Plant-virus-based vaccines have emerged as a promising avenue in vaccine development. This report describes the engineering of an innovative vaccine platform using the papaya mosaic virus (PapMV) capsid protein (CP) as a carrier protein and a C-terminal fused hepatitis C virus (HCV) E2 epitope as the immunogenic target. Two antigen organizations of the PapMV-based vaccines were tested: a virus-like-particle (VLP; PapMVCP-E2) and a monomeric form (PapMVCP(27-215)-E2).

View Article and Find Full Text PDF

Relatively little is known with respect to the oocyte proteins that are involved in nuclear reprogramming of somatic cells in mammals. The aim of the present study was to use a cell-free incubation system between porcine oocyte proteins and somatic cell nuclei and to identify oocyte proteins that remain associated with these somatic cell nuclei. In two separate experiments, porcine oocytes were either labeled with biotin to label total proteins at the germinal vesicle stage or metaphase II stage or they were labeled with 0.

View Article and Find Full Text PDF