Biochem Biophys Res Commun
December 2024
Voltage-gated potassium (Kv) channels are integral to cellular excitability, impacting the resting membrane potential, repolarization, and shaping action potentials in neurons and cardiac myocytes. Structurally, Kv channels are homo or heterotetramers comprising four α-subunits, each with six transmembrane segments (S1-S6). Silent Kv (KvS), includes Kv5.
View Article and Find Full Text PDFOligonucleotides have emerged as important therapeutic options for inherited diseases. In recent years, RNA therapeutics, especially mRNA, have been pushed to the market. Analytical methods for these molecules have been published extensively in the last few years.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
February 2024
The cooperative action of the subunits in oligomeric receptors enables fine-tuning of receptor activation, as demonstrated for the regulation of voltage-activated HCN pacemaker ion channels by relating cAMP binding to channel activation in ensemble signals. HCN channels generate electric rhythmicity in specialized brain neurons and cardiomyocytes. There is conflicting evidence on whether binding cooperativity does exist independent of channel activation or not, as recently reported for detergent-solubilized receptors positioned in zero-mode waveguides.
View Article and Find Full Text PDFMethanogenesis is a key step during anaerobic biomass degradation. Methanogenic archaea (methanogens) are the only organisms coupling methanogenic substrate conversion to energy conservation. The range of substrates utilized by methanogens is limited, with acetate and H+CO being the ecologically most relevant.
View Article and Find Full Text PDFEnviron Sci Technol
February 2024
Direct air capture (DAC) of CO has gained attention as a sustainable carbon source. One of the most promising technologies currently available is liquid solvent DAC (L-DAC), but the significant fraction of fossil CO in the output stream hinders its utilization in carbon-neutral fuels and chemicals. Fossil CO is generated and captured during the combustion of fuels to calcine carbonates, which is difficult to decarbonize due to the high temperatures required.
View Article and Find Full Text PDFThe Martian atmosphere contains 0.16% oxygen, which is an example of an in-situ resource that can be used as precursor or oxidant for propellants, for life support systems and potentially for scientific experiments. Thus, the present work is related to the invention of a process to concentrate oxygen in the oxygen-deficient extraterrestrial atmosphere by means of a thermochemical process and the determination of a suitable best-case apparatus design to carry out the process.
View Article and Find Full Text PDFCaMnO-based perovskites find application in a variety of thermochemical cycles, oxygen partial pressure adjustment, chemical looping processes, and thermochemical energy storage. The applicability of these materials is governed by their thermodynamic and kinetic properties. Therefore, tunability of these properties is desirable to adapt the material to the required conditions.
View Article and Find Full Text PDFDimeric metabotropic glutamate receptors (mGluRs) are abundantly expressed in neurons. In mammals, eight subunit isoforms, mGluR1-8, have been identified, forming the groups I, II, and III. We investigated receptor dimerization and kinetics of these mGluR isoforms in excised membrane patches by FRET and confocal patch-clamp fluorometry.
View Article and Find Full Text PDFHydrogen (H ) produced from renewables will have a growing impact on the global energy dynamics towards sustainable and carbon-neutral standards. The share of green H is still too low to meet the net-zero target, while the demand for high-quality hydrogen continues to rise. These factors amplify the need for economically viable H generation technologies.
View Article and Find Full Text PDFPerovskite oxides of the general formula ABO, with A and B being metal cations, present themselves in various crystal structures that originate from a distorted ideal cubic perovskite. Understanding how composition, temperature, atmosphere and reduction extent of these non-stoichiometric redox materials induce structural changes on an atomic, as well as macroscopic, level is crucial to transfer newly developed materials to industrial scale applications in the redox-based energy conversion sector. Herein, CaSrMnO ( ∈ [0,0.
View Article and Find Full Text PDFCyclic nucleotide-gated (CNG) ion channels of olfactory sensory neurons contain three types of homologue subunits, two CNGA2 subunits, one CNGA4 subunit and one CNGB1b subunit. Each subunit carries an intracellular cyclic nucleotide binding domain (CNBD) whose occupation by up to four cyclic nucleotides evokes channel activation. Thereby, the subunits interact in a cooperative fashion.
View Article and Find Full Text PDFHyperpolarization-activated and cyclic nucleotide (HCN) modulated channels are tetrameric cation channels. In each of the four subunits, the intracellular cyclic nucleotide-binding domain (CNBD) is coupled to the transmembrane domain via a helical structure, the C-linker. High-resolution channel structures suggest that the C-linker enables functionally relevant interactions with the opposite subunit, which might be critical for coupling the conformational changes in the CNBD to the channel pore.
View Article and Find Full Text PDFLigand-gated ion channels are oligomers containing several binding sites for the ligands. However, the signal transmission from the ligand binding site to the pore has not yet been fully elucidated for any of these channels. In heteromeric channels, the situation is even more complex than in homomeric channels.
View Article and Find Full Text PDFP2X receptors are trimeric nonselective cation channels gated by ATP. They assemble from seven distinct subunit isoforms as either homo- or heteromeric complexes and contain three extracellularly located binding sites for ATP. P2X receptors are expressed in nearly all tissues and are there involved in physiological processes like synaptic transmission, pain, and inflammation.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
July 2021
Cyclic nucleotide-gated (CNG) ion channels of olfactory neurons are tetrameric membrane receptors that are composed of two A2 subunits, one A4 subunit, and one B1b subunit. Each subunit carries a cyclic nucleotide-binding domain in the carboxyl terminus, and the channels are activated by the binding of cyclic nucleotides. The mechanism of cooperative channel activation is still elusive.
View Article and Find Full Text PDFP2X7 receptors are trimeric ion channels activated by extracellular ATP. Upon activation, they trigger cytolysis and apoptosis but also control cell proliferation. To shed more light on channel gating and the underlying function of the individual subunits, receptors of concatenated subunits were built containing a defined number of functional binding sites.
View Article and Find Full Text PDFOpening of hyperpolarization-activated cyclic nucleotide-modulated (HCN) channels is controlled by membrane hyperpolarization and binding of cyclic nucleotides to the tetrameric cyclic nucleotide-binding domain (CNBD), attached to the C-linker (CL) disk. Confocal patch-clamp fluorometry revealed pronounced cooperativity of ligand binding among protomers. However, by which pathways allosteric signal transmission occurs remained elusive.
View Article and Find Full Text PDFIonotropic purinergic (P2X) receptors are trimeric channels that are activated by the binding of ATP. They are involved in multiple physiological functions, including synaptic transmission, pain and inflammation. The mechanism of activation is still elusive.
View Article and Find Full Text PDFVoltage-gated sodium (Na+) channels are responsible for the fast upstroke of the action potential of excitable cells. The different α subunits of Na+ channels respond to brief membrane depolarizations above a threshold level by undergoing conformational changes that result in the opening of the pore and a subsequent inward flux of Na+. Physiologically, these initial membrane depolarizations are caused by other ion channels that are activated by a variety of stimuli such as mechanical stretch, temperature changes, and various ligands.
View Article and Find Full Text PDFIonotropic purinergic receptors (P2X receptors) are non-specific cation channels that are activated by the binding of ATP at their extracellular side. P2X receptors contribute to multiple functions, including the generation of pain, inflammation, or synaptic transmission. The channels are trimers and structural information on several of their isoforms is available.
View Article and Find Full Text PDFδ-Selective compounds 1 and 2 (DS1, compound 22; DS2, compound 16) were introduced as functionally selective modulators of δ-containing GABA type A receptors (GABAR). In our hands, [H]EBOB-binding experiments with recombinant GABAR and compound 22 showed no proof of δ-selectivity, although there was a minimally higher preference for the α4β3δ and α6β2/3δ receptors with respect to potency. In order to delineate the structural determinants of δ preferences, we synthesized 25 derivatives of DS1 and DS2, and investigated their structure-activity relationships (SAR).
View Article and Find Full Text PDFMethane is a key intermediate in the carbon cycle and biologically produced by methanogenic archaea. Most methanogens are able to conserve energy by reducing CO2 to methane using molecular hydrogen as electron donor (hydrogenotrophic methanogenesis), but several hydrogenotrophic methanogens can also use formate as electron donor for methanogenesis. Formate dehydrogenase (Fdh) oxidizes formate to CO2 and is involved in funneling reducing equivalents into the methanogenic pathway, but details on other factors relevant for formate-dependent physiology of methanogens are not available.
View Article and Find Full Text PDFIn the present work, thermochemical water splitting with siliconized silicon carbide (SiSiC) honeycombs coated with a zinc ferrite redox material was investigated. The small scale coated monoliths were tested in a laboratory test-rig and characterized by X-ray diffractometry (XRD) and Scanning Electron Microscopy (SEM) with corresponding micro analysis after testing in order to characterize the changes in morphology and composition. Comparison of several treated monoliths revealed the formation of various reaction products such as SiO₂, zircon (ZrSiO₄), iron silicide (FeSi) and hercynite (FeAl₂O₄) indicating the occurrence of various side reactions between the different phases of the coating as well as between the coating and the SiSiC substrate.
View Article and Find Full Text PDF