Publications by authors named "Christian S Riesenfeld"

Polar marine ecosystems hold the potential for bioactive compound biodiscovery, based on their untapped macro- and microorganism diversity. Characterization of polar benthic marine invertebrate-associated microbiomes is limited to few studies. This study was motivated by our interest in better understanding the microbiome structure and composition of the ascidian, , in which palmerolide A (PalA), a bioactive macrolide with specificity against melanoma, was isolated.

View Article and Find Full Text PDF

Antarctic surface oceans are well-studied during summer when irradiance levels are high, sea ice is melting and primary productivity is at a maximum. Coincident with this timing, the bacterioplankton respond with significant increases in secondary productivity. Little is known about bacterioplankton in winter when darkness and sea-ice cover inhibit photoautotrophic primary production.

View Article and Find Full Text PDF

Palmerolide A (1) is a macrolide isolated from the Antarctic tunicate Synoicum adareanum that is of interest due to its potential as an antimelanoma drug. Biosynthesis is predicted to occur via a hybrid PKS-NRPS pathway within S. adareanum, but the identity of the palmerolide-producing organism (host or putative host-associated microorganism) has not been established.

View Article and Find Full Text PDF

Uncultured microorganisms comprise the majority of the planet's biological diversity. Microorganisms represent two of the three domains of life and contain vast diversity that is the product of an estimated 3.8 billion years of evolution.

View Article and Find Full Text PDF

Antibiotic resistance genes are typically isolated by cloning from cultured bacteria or by polymerase chain reaction (PCR) amplification from environmental samples. These methods do not access the potential reservoir of undiscovered antibiotic resistance genes harboured by soil bacteria because most soil bacteria are not cultured readily, and PCR detection of antibiotic resistance genes depends on primers that are based on known genes. To explore this reservoir, we isolated DNA directly from soil samples, cloned the DNA and selected for clones that expressed antibiotic resistance in Escherichia coli.

View Article and Find Full Text PDF