Background: Adoptive T-cell therapy has demonstrated clinical activity in B-cell malignancies, offering hope for its application to a broad spectrum of cancers. However, a significant portion of patients with solid tumors experience primary or secondary resistance to this treatment modality. Target antigen loss resulting either from non-uniform antigen expression or defects in antigen processing and presentation machinery is one well-characterized resistance mechanism.
View Article and Find Full Text PDFThe E6 and E7 oncoproteins of human papillomavirus (HPV) are considered promising targets for HPV-related cancers. In this study, we evaluated novel T cell receptor mimic (TCRm) nanobodies targeting the E6 peptide complexed with human leukocyte antigen (HLA)-A∗02:01 in the chimeric antigen receptor (CAR) format. We isolated two dromedary camel nanobodies, F5 and G9, through phage display screening.
View Article and Find Full Text PDFUnlabelled: Mutations in polymerases and exonuclease domains in humans are associated with increased cancer incidence, elevated tumor mutation burden (TMB) and response to immune checkpoint blockade (ICB). Although ICB is approved for treatment of several cancers, not all tumors with elevated TMB respond. Here we generated and proofreading mutator mice and show that ICB treatment of mice with high TMB tumors did not improve survival as only a subset of tumors responded.
View Article and Find Full Text PDFUnlabelled: Mitochondrial function is important for both energetic and anabolic metabolism. Pathogenic mitochondrial DNA (mtDNA) mutations directly impact these functions, resulting in the detrimental consequences seen in human mitochondrial diseases. The role of pathogenic mtDNA mutations in human cancers is less clear; while pathogenic mtDNA mutations are observed in some cancer types, they are almost absent in others.
View Article and Find Full Text PDFThe T cell antigen receptor (TCR) contains ten immunoreceptor tyrosine-based activation motif (ITAM) signaling sequences distributed within six CD3 subunits; however, the reason for such structural complexity and multiplicity is unclear. Here we evaluated the effect of inactivating the three CD3ζ chain ITAMs on TCR signaling and T cell effector responses using a conditional 'switch' mouse model. Unexpectedly, we found that T cells expressing TCRs containing inactivated (non-signaling) CD3ζ ITAMs (6F-CD3ζ) exhibited reduced ability to discriminate between low- and high-affinity ligands, resulting in enhanced signaling and cytokine responses to low-affinity ligands because of a previously undetected inhibitory function of CD3ζ ITAMs.
View Article and Find Full Text PDFPurpose: Chimeric antigen receptor (CAR) and T-cell receptor (TCR) T-cell therapies are effective in a subset of patients with solid tumors, but new approaches are needed to universally improve patient outcomes. Here, we developed a technology to leverage the cooperative effects of IL15 and IL21, two common cytokine-receptor gamma chain family members with distinct, pleiotropic effects on T cells and other lymphocytes, to enhance the efficacy of adoptive T cells.
Experimental Design: We designed vectors that induce the constitutive expression of either membrane-tethered IL15, IL21, or IL15/IL21.
T cell receptor (TCR)-engineered T cell therapy using high-affinity TCRs is a promising treatment modality for cancer. Discovery of high-affinity TCRs especially against self-antigens can require approaches that circumvent central tolerance, which may increase the risk of cross-reactivity. Despite the potential for toxicity, no standardized approach to screen cross-reactivity has been established in the context of preclinical safety evaluation.
View Article and Find Full Text PDFThe clinical impact of any therapy requires the product be safe and effective. Gammaretroviral vectors pose several unique risks, including inadvertent exposure to replication competent retrovirus (RCR) that can arise during vector manufacture. The US FDA has required patient monitoring for RCR, and the National Gene Vector Biorepository is an NIH resource that has assisted eligible investigators in meeting this requirement.
View Article and Find Full Text PDFEngineered T cell therapy has shown remarkable efficacy in hematologic malignancies and has the potential for application to common epithelial cancers. Diverse T cell therapy strategies including adoptive transfer of tumor-infiltrating lymphocytes, chimeric antigen receptor (CAR)-T cells, and T cell receptor (TCR)-T cells have been studied in clinical trials. Recent research has established treatment of human papillomavirus (HPV)-associated cancers with TCR-T cells as a model for proof-of-principle studies in epithelial cancers.
View Article and Find Full Text PDFAs the targets of chimeric antigen receptor (CAR)-T cells expand to a variety of cancers, autoimmune diseases, viral infections, and fibrosis, there is an increasing demand for identifying new antigens and designing new CARs that can be effectively activated. However, the rational selection of antigens and the design of CARs are limited by a lack of knowledge regarding the molecular mechanism by which CARs are activated by antigens. Here, we present data supporting a "size exclusion" model explaining how antigen signals are transmitted across the plasma membrane to activate the intracellular domains of CARs.
View Article and Find Full Text PDFBackground: Cell therapy has shown promise in the treatment of certain solid tumors, but its efficacy may be limited by inhibition of therapeutic T cells by the programmed cell death protein-1 (PD-1) receptor. Clinical trials are testing cell therapy in combination with disruption or PD-1-axis blockade. However, preclinical data to support these approaches and to guide the treatment design are lacking.
View Article and Find Full Text PDFBackground: Recurrent respiratory papillomatosis (RRP) is a human papillomavirus (HPV) driven neoplastic disorder of the upper aerodigestive tract that causes significant morbidity and can lead to fatal airway obstruction. Prior clinical study demonstrated clinical benefit with the programmed death-ligand 1 (PD-L1) monoclonal antibody avelumab. Bintrafusp alpha is a bifunctional inhibitor of PD-L1 and transforming growth factor-beta (TGF-b) that has shown clinical activity in several cancer types.
View Article and Find Full Text PDFThis article reviews the most recent literature describing clinical advances in adoptive cell therapy for patients with head and neck cancer. Clinical trials with tumor-infiltrating lymphocyte and gene-engineered T-cell receptor T-cell therapy are highlighted.
View Article and Find Full Text PDFGenetically engineered T cell therapy can induce remarkable tumor responses in hematologic malignancies. However, it is not known if this type of therapy can be applied effectively to epithelial cancers, which account for 80-90% of human malignancies. We have conducted a first-in-human, phase 1 clinical trial of T cells engineered with a T cell receptor targeting HPV-16 E7 for the treatment of metastatic human papilloma virus-associated epithelial cancers (NCT02858310).
View Article and Find Full Text PDFBackground: Bintrafusp alfa is a first-in-class bifunctional fusion protein composed of the extracellular domain of transforming growth factor (TGF)-βRII (a TGF-β 'trap') fused to a human IgG1 mAb blocking programmed cell death ligand 1. This is the largest analysis of patients with advanced, pretreated human papillomavirus (HPV)-associated malignancies treated with bintrafusp alfa.
Methods: In these phase 1 (NCT02517398) and phase 2 trials (NCT03427411), 59 patients with advanced, pretreated, checkpoint inhibitor-naive HPV-associated cancers received bintrafusp alfa intravenously every 2 weeks until progressive disease, unacceptable toxicity, or withdrawal.
Background: Interleukin-12 (IL-12) is a potent, proinflammatory cytokine that holds promise for cancer immunotherapy, but its clinical use has been limited by its toxicity. To minimize systemic exposure and potential toxicity while maintaining the beneficial effects of IL-12, we developed a novel IL-12-based therapeutic system that combines tumor-specific T-cell-mediated delivery of IL-12 with membrane-restricted IL-12 localization and inducible IL-12 expression.
Methods: Therapeutic T cells targeting a tumor antigen were genetically engineered to express membrane-anchored IL-12 (aIL-12).
T cell receptor (TCR) gene-engineered T cells have shown promise in the treatment of melanoma and synovial cell sarcoma, but their application to epithelial cancers has been limited. The identification of novel therapeutic TCRs for the targeting of these tumors is important for the development of new treatments. Here, we describe the preclinical characterization of a TCR directed against Kita-Kyushu Lung Cancer Antigen-1 (KK-LC-1, encoded by CT83), a cancer germline antigen with frequent expression in human epithelial malignancies including gastric cancer, breast cancer, and lung cancer.
View Article and Find Full Text PDFPurpose: Genetically engineered T-cell therapy is an emerging treatment of hematologic cancers with potential utility in epithelial cancers. We investigated T-cell therapy for the treatment of metastatic human papillomavirus (HPV)-associated epithelial cancers.
Methods: This phase I/II, single-center trial enrolled patients with metastatic HPV16-positive cancer from any primary tumor site who had received prior platinum-based therapy.
Background: Recurrent respiratory papillomatosis (RRP) is a human papillomavirus (HPV)-driven disorder that causes substantial morbidity and can lead to fatal distal airway obstruction and post-obstructive pneumonias. Patients require frequent surgical debridement of disease, and no approved systemic adjuvant therapies exist.
Methods: A phase II study was conducted to investigate the clinical activity and safety of programmed death-ligand 1 (PD-L1) blockade with avelumab in patients with RRP.
Importance: Clinical trials are testing vaccines that target human papillomavirus 16 (HPV-16) oncoproteins for the treatment of cervical cancer regardless of the HPV type of the tumor. For patients with HPV-18-positive cancers, this strategy relies on cross-reactivity of HPV-16-reactive T cells against the HPV-18 oncoproteins.
Objectives: To determine the prevalence of HPV-16 and HPV-18 metastatic cervical cancers in women enrolling in clinical trials at a US medical center and to assess whether HPV oncoprotein-targeting tumor-infiltrating lymphocytes (TILs) and T-cell receptors (TCRs) possess HPV-16/HPV-18 oncoprotein cross-reactivity.
Purpose: Cellular therapy is an emerging cancer treatment modality, but its application to epithelial cancers has been limited. This clinical trial evaluated tumor-infiltrating lymphocyte (TIL) therapy for the treatment of patients with metastatic human papillomavirus (HPV)-associated carcinomas.
Patients And Methods: The trial was a phase II design with two cohorts, cervical cancers and noncervical cancers.
T cell receptor (TCR) T cell therapy is a promising cancer treatment modality. However, its successful development for epithelial cancers may depend on the identification of high-avidity TCRs directed against tumor-restricted target antigens. The human papillomavirus (HPV) E7 antigen is an attractive therapeutic target that is constitutively expressed by HPV+ cancers but not by healthy tissues.
View Article and Find Full Text PDFAs oncogenes drive carcinogenesis and promote cancer cell survival, they are highly attractive therapeutic targets, and oncogene-targeting small molecules have achieved some clinical success. While many oncogenes are presently considered to be "druggable," tumors often acquire treatment resistance, and patients are rarely cured in response to oncogene-specific treatment. In this issue of the JCI, Veatch and colleagues describe a patient with metastatic acral melanoma who experienced a complete tumor response following infusion of tumor-infiltrating T cells that targeted multiple tumor antigens, including a BRAFV600E driver mutation.
View Article and Find Full Text PDF