Publications by authors named "Christian Rohr"

There are concerns that recent climate change is altering the frequency and magnitude of river floods in an unprecedented way. Historical studies have identified flood-rich periods in the past half millennium in various regions of Europe. However, because of the low temporal resolution of existing datasets and the relatively low number of series, it has remained unclear whether Europe is currently in a flood-rich period from a long-term perspective.

View Article and Find Full Text PDF
Article Synopsis
  • - Weather and climate hazards can cause significant economic losses and societal disruptions, making risk quantification crucial, especially with climate change on the horizon.
  • - Climate risk assessments increasingly rely on model chains that utilize both recent data and historical weather information to better simulate impacts.
  • - The effective use of historical data involves integrating various sources and methods to enhance climate risk assessment, such as validating models, estimating hazards, and identifying worst-case scenarios.
View Article and Find Full Text PDF

Coloured Petri nets are an excellent choice for exploring large biological models, particularly when there are repetitions of components. Such models can be easily adapted by slight modifications of parameter values related to colours. Similarly, multi-scale models could involve multiple spatial scales in addition to multiple time scales.

View Article and Find Full Text PDF

We consider localised DNA computation, where a DNA strand walks along a binary decision graph to compute a binary function. One of the challenges for the design of reliable walker circuits consists in leakage transitions, which occur when a walker jumps into another branch of the decision graph. We automatically identify leakage transitions, which allows for a detailed qualitative and quantitative assessment of circuit designs, design comparison, and design optimisation.

View Article and Find Full Text PDF

The analysis of the dynamic behaviour of genome-scale models of metabolism (GEMs) currently presents considerable challenges because of the difficulties of simulating such large and complex networks. Bacterial GEMs can comprise about 5000 reactions and metabolites, and encode a huge variety of growth conditions; such models cannot be used without sophisticated tool support. This article is intended to aid modellers, both specialist and non-specialist in computerized methods, to identify and apply a suitable combination of tools for the dynamic behaviour analysis of large-scale metabolic designs.

View Article and Find Full Text PDF

Background: Hybrid simulation of (computational) biochemical reaction networks, which combines stochastic and deterministic dynamics, is an important direction to tackle future challenges due to complex and multi-scale models. Inherently hybrid computational models of biochemical networks entail two time scales: fast and slow. Therefore, it is intricate to efficiently and accurately analyse them using only either deterministic or stochastic simulation.

View Article and Find Full Text PDF

The mesothelium, the lining of the coelomic cavities, and the urothelium, the inner lining of the urinary drainage system, are highly specialized epithelia that protect the underlying tissues from mechanical stress and seal them from the overlying fluid space. The development of these epithelia from simple precursors and the molecular characteristics of the mature tissues are poorly analyzed. Here, we show that uroplakin 3B (Upk3b), which encodes an integral membrane protein of the tetraspanin superfamily, is specifically expressed both in development as well as under homeostatic conditions in adult mice in the mesothelia of the body cavities, i.

View Article and Find Full Text PDF

Mathematical models of molecular networks regulating biological processes in cells or organisms are most frequently designed as sets of ordinary differential equations. Various modularisation methods have been applied to reduce the complexity of models, to analyse their structural properties, to separate biological processes, or to reuse model parts. Taking the JAK/STAT signalling pathway with the extensive combinatorial cross-talk of its components as a case study, we make a natural approach to modularisation by creating one module for each biomolecule.

View Article and Find Full Text PDF

Using the example of phosphate regulation in enteric bacteria, we demonstrate the particular suitability of stochastic Petri nets to model biochemical phenomena and their simulative exploration by various features of the software tool Snoopy.

View Article and Find Full Text PDF

Summary: To investigate biomolecular networks, Snoopy provides a unifying Petri net framework comprising a family of related Petri net classes. Models can be hierarchically structured, allowing for the mastering of larger networks. To move easily between the qualitative, stochastic and continuous modelling paradigms, models can be converted into each other.

View Article and Find Full Text PDF