Publications by authors named "Christian Rischel"

We describe a new method for screening protein-protein interaction of biopharmaceutical molecules at dilute concentrations to predict development issues at high concentration. The method is based on Asymmetrical Flow Field-Flow Fractionation (AF4) measurements using well known effects of protein-protein attraction on the fractionation profile due to elevated protein concentrations occurring close to the membrane. We explore the effect for 4 different monoclonal antibodies and show that the profiles obtained are quite different.

View Article and Find Full Text PDF

Concentrated solutions of monoclonal antibodies have attracted considerable attention due to their importance in pharmaceutical formulations; yet, their tendency to aggregate and the resulting high viscosity pose considerable problems. Here we tackle this problem by a soft condensed matter physics approach, which combines a variety of experimental measurements with a patchy colloid model, amenable of analytical solution. We thus report results of structural antibodies and dynamic properties obtained through scattering methods and microrheological experiments.

View Article and Find Full Text PDF

The present work describes a series of human growth hormone (hGH) albumin binder conjugates with an extended in vivo half-life. A broad range of different conjugates were studied by varying the albumin binder structure and conjugation site. Conjugates were conveniently obtained by reductive alkylation or by alkylation to introduced cysteines using functionalized albumin-binding side chains.

View Article and Find Full Text PDF

Objective: Somapacitan is an albumin-binding growth hormone derivative intended for once weekly administration, currently in clinical development for treatment of adult as well as juvenile GH deficiency. Nonclinical in vivo pharmacological characterisation of somapacitan was performed to support the clinical trials. Here we present the pharmacokinetic and pharmacodynamic effects of somapacitan in rats, minipigs, and cynomolgus monkeys.

View Article and Find Full Text PDF

Nanoparticle tracking analysis (NTA) has attracted great interest for application in the field of submicron particle characterization for biopharmaceuticals. It has the virtue of direct sample visualization and particle-by-particle tracking, but the complexity of method development has limited its routine applicability. We systematically evaluated data collection and processing parameters as well as sample handling methods using shake-stressed protein samples.

View Article and Find Full Text PDF

Purpose: Concentrated protein formulations are strongly influenced by protein-protein interactions. These can be probed at low protein concentration by e.g.

View Article and Find Full Text PDF

Mechanical stress can strongly influence the capability of a protein to aggregate and the kinetics of aggregation, but there is little insight into the underlying mechanism. Here we study the effect of different mechanical stress conditions on the fibrillation of the peptide hormone glucagon, which forms different fibrils depending on temperature, pH, ionic strength, and concentration. A combination of spectroscopic and microscopic data shows that fibrillar polymorphism can also be induced by mechanical stress.

View Article and Find Full Text PDF

Amyloid fibrils formed by the 29-residue peptide hormone glucagon at different concentrations have strikingly different morphologies when observed by transmission electron microscopy. Fibrils formed at low concentration (0.25 mg/mL) consist of two or more protofilaments with a regular twist, while fibrils at high concentration (8 mg/mL) consist of two straight protofilaments.

View Article and Find Full Text PDF

Using an IgG1 antibody as a model system, we have studied the mechanisms by which multidomain proteins aggregate at physiological pH when incubated at temperatures just below their lowest thermal transition. In this temperature interval, only minor changes to the protein conformation are observed. Light scattering consistently showed two coupled phases: an initial fast phase followed by several hours of exponential growth of the scattered intensity.

View Article and Find Full Text PDF

Using the peptide hormone glucagon and Abeta(1-40) as model systems, we have sought to elucidate the mechanisms by which fibrils grow and multiply. We here present real-time observations of growing fibrils at a single-fibril level. Growing from preformed seeds, glucagon fibrils were able to generate new fibril ends by continuously branching into new fibrils.

View Article and Find Full Text PDF

The 29-residue peptide hormone glucagon readily fibrillates at low pH, but the structure and morphology of the fibrils are very sensitive to the environmental conditions. Here we have investigated the mechanism behind the differences in morphology observed when glucagon fibrils are formed at different peptide concentrations. Electron microscopy shows that fibrils formed at low glucagon concentration (0.

View Article and Find Full Text PDF

We have performed a thorough characterization of fluorescence correlations spectroscopy (FCS) applied to oil-water interfaces of viscous oil droplets in aqueous solution, including numerical wave-optical calculations of the detection geometry and regularized multicomponent analysis of sample data. It is shown how significant errors in the estimation of the surface concentration can be avoided when FCS is applied to an interface region. We present data on the adsorption dynamics of beta-lactoglobulin (BLG), a well-studied model system.

View Article and Find Full Text PDF

When subjected to acidic conditions and high temperature, insulin is known to produce fibrils that display the common properties of disease amyloids. Thus, clarifying the mechanisms of insulin fibrillation can help the general understanding of amyloidal aggregation. Insulin fibrillation exhibits a very sharp time dependence, with a pronounced lag phase and subsequent explosive growth of amyloidal aggregates.

View Article and Find Full Text PDF

The adsorption of insulin at an oil-water interface was studied with fluorescence correlation spectroscopy (FCS). FCS is able to measure diffusion properties of insulin at nanomolar concentrations, making it possible to detect the very early steps in the adsorption process. Below 20 nM bulk insulin concentration, the insulin molecules adsorbed to the surface diffuse freely at all times during the experiment (a few hours).

View Article and Find Full Text PDF