Publications by authors named "Christian Riess"

Generative adversarial networks (GANs) and diffusion models (DMs) have revolutionized the creation of synthetically generated but realistic-looking images. Distinguishing such generated images from real camera captures is one of the key tasks in current multimedia forensics research. One particular challenge is the generalization to unseen generators or post-processing.

View Article and Find Full Text PDF

Purpose: In Talbot-Lau X-ray phase contrast imaging, the measured phase value depends on the position of the object in the measurement setup. When imaging large objects, this may lead to inhomogeneous phase contributions within the object. These inhomogeneities introduce artifacts in tomographic reconstructions of the object.

View Article and Find Full Text PDF

The X-ray dark-field signal can be measured with a grating-based Talbot-Lau interferometer. It measures small angle scattering of micrometer-sized oriented structures. Interestingly, the signal is a function not only of the material, but also of the relative orientation of the sample, the X-ray beam direction, and the direction of the interferometer sensitivity.

View Article and Find Full Text PDF

Capturing ground truth data to benchmark super-resolution (SR) is challenging. Therefore, current quantitative studies are mainly evaluated on simulated data artificially sampled from ground truth images. We argue that such evaluations overestimate the actual performance of SR methods compared to their behavior on real images.

View Article and Find Full Text PDF

Compared to conventional attenuation x-ray radiographic imaging, the x-ray Talbot-Lau technique provides further information about the scattering and the refractive properties of the object in the beam path. Hence, this additional information should improve the diagnostic process concerning medical applications and non-destructive testing. Nevertheless, until now, due to grating fabrication process, Talbot-Lau imaging suffers from small grating sizes (70 mm diameter).

View Article and Find Full Text PDF

This paper tries to give a gentle introduction to deep learning in medical image processing, proceeding from theoretical foundations to applications. We first discuss general reasons for the popularity of deep learning, including several major breakthroughs in computer science. Next, we start reviewing the fundamental basics of the perceptron and neural networks, along with some fundamental theory that is often omitted.

View Article and Find Full Text PDF

Worldwide prevalence of peripheral artery disease (PAD) is increasing and peripheral vascular intervention (PVI) has become the primary invasive treatment. There is evidence that multidisciplinary team decision-making (MTD) has an impact on in-hospital outcomes. This study aims to depict practice patterns and time changes regarding MTD of different medical specialties.

View Article and Find Full Text PDF

Purpose: Two phase gratings in an X-ray grating interferometers can solve several technical challenges for clinical use of X-ray phase contrast. In this work, we adapt and evaluate this setup design to clinical X-ray sources and detectors in a simulation study.

Methods: For a given set of gratings, we optimize the remaining parameter space of a dual-phase grating setup using a numerical wave front simulation.

View Article and Find Full Text PDF

X-ray grating-based phase-contrast imaging has raised interest regarding a variety of potential clinical applications, whereas the method is feasible using a medical x-ray tube. Yet, the transition towards a clinical setup remains challenging due to the requirement of mechanical robustness of the interferometer and high demands applying to medical equipment in clinical use. We demonstrate the successful implementation of a Talbot-Lau interferometer in an interventional c-arm setup.

View Article and Find Full Text PDF

Grating-based Talbot-Lau x-ray interferometry is a popular method for measuring absorption, phase shift, and small-angle scattering. The standard acquisition method for this modality is phase stepping, where the Talbot pattern is reconstructed from multiple images acquired at different grating positions. We review the implicit assumptions in phase-stepping reconstruction, and find that the assumptions of perfectly known grating positions and homoscedastic noise variance are violated in some scenarios.

View Article and Find Full Text PDF

Purpose: Grating-based Talbot-Lau interferometers are a popular choice for phase-contrast X-ray acquisitions. Here, an air reference scan has to be acquired prior to an object scan. This particularly complicates acquisition of large objects: large objects are tiled into multiple scans due to the small field of view of current gratings.

View Article and Find Full Text PDF

Objective. To demonstrate a novel approach of compensating overexposure artifacts in CT scans of the knees without attaching any supporting appliances to the patient. C-Arm CT systems offer the opportunity to perform weight-bearing knee scans on standing patients to diagnose diseases like osteoarthritis.

View Article and Find Full Text PDF

Grating-based X-ray dark-field imaging is a new imaging modality. It allows the visualization of structures at micrometer scale due to small-angle scattering of the X-ray beam. However, reading darkfield images is challenging as absorption and edge-diffraction effects also contribute to the dark-field signal, without adding diagnostic value.

View Article and Find Full Text PDF

Grating-based X-ray dark-field imaging is a novel technique for obtaining image contrast for object structures at size scales below setup resolution. Such an approach appears particularly beneficial for medical imaging and nondestructive testing. It has already been shown that the dark-field signal depends on the direction of observation.

View Article and Find Full Text PDF

Fresnel zone plate based soft x-ray transmission microspectroscopy has developed into a routine technique for high-resolution elemental or chemical 2D imaging of thin film specimens. The availability of high resolution Fresnel lenses with short depth of focus offers the possibility of optical slicing (in the third dimension) by focus series with resolutions in the submicron regime. We introduce a 3D reconstruction algorithm that uses a variance-based metric to assign a focus measure as basis for volume rendering.

View Article and Find Full Text PDF

Purpose: In the community of x-ray imaging, there is a multitude of tools and applications that are used in scientific practice. Many of these tools are proprietary and can only be used within a certain lab. Often the same algorithm is implemented multiple times by different groups in order to enable comparison.

View Article and Find Full Text PDF

Most existing color constancy algorithms assume uniform illumination. However, in real-world scenes, this is not often the case. Thus, we propose a novel framework for estimating the colors of multiple illuminants and their spatial distribution in the scene.

View Article and Find Full Text PDF