Light can be used as a precise and reversible trigger for the activation of optogenetic tools with subcellular resolution. The interaction of the photoreceptor PAL and aptamer 53 was integrated into a CRISPR/dCas9 system, which can be applied for light-controlled activation of gene expression. Here, we describe a protocol for in vitro application of light-dependent overexpression using eBFP as a proof of concept.
View Article and Find Full Text PDFThe regulation of gene expression by light enables the versatile, spatiotemporal manipulation of biological function in bacterial and mammalian cells. Optoribogenetics extends this principle by molecular RNA devices acting on the RNA level whose functions are controlled by the photoinduced interaction of a light-oxygen-voltage photoreceptor with cognate RNA aptamers. Here light-responsive ribozymes, denoted optozymes, which undergo light-dependent self-cleavage and thereby control gene expression are described.
View Article and Find Full Text PDFIn nature as in biotechnology, light-oxygen-voltage photoreceptors perceive blue light to elicit spatiotemporally defined cellular responses. Photon absorption drives thioadduct formation between a conserved cysteine and the flavin chromophore. An equally conserved, proximal glutamine processes the resultant flavin protonation into downstream hydrogen-bond rearrangements.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
December 2020
The investigation and manipulation of cellular processes with subcellular resolution requires non-invasive tools with spatiotemporal precision and reversibility. Building on the interaction of the photoreceptor PAL with an RNA aptamer, we describe a variation of the CRISPR/dCAS9 system for light-controlled activation of gene expression. This platform significantly reduces the coding space required for genetic manipulation and provides a strong on-switch with almost no residual activity in the dark.
View Article and Find Full Text PDFSensory photoreceptor proteins underpin light-dependent adaptations in nature and enable the optogenetic control of organismal behavior and physiology. We identified the bacterial light-oxygen-voltage (LOV) photoreceptor PAL that sequence-specifically binds short RNA stem loops with around 20 nM affinity in blue light and weaker than 1 µM in darkness. A crystal structure rationalizes the unusual receptor architecture of PAL with C-terminal LOV photosensor and N-terminal effector units.
View Article and Find Full Text PDF