Mucus in the colon is crucial for intestinal homeostasis by forming a barrier that separates microbes from the epithelium. This is achieved by the structural arrangement of the major mucus proteins, such as MUC2 and FCGBP, both of which are comprised of several von Willebrand D domains (vWD) and assemblies. Numerous disulfide bonds stabilise these domains, and intermolecular bonds generate multimers of MUC2.
View Article and Find Full Text PDFThe MUC2 mucin protects the colonic epithelium by a two-layered mucus with an inner attached bacteria-free layer and an outer layer harboring commensal bacteria. CysD domains are 100 amino-acid-long sequences containing 10 cysteines that separate highly O-glycosylated proline, threonine, serine (PTS) regions in mucins. The structure of the second CysD, CysD2, of MUC2 is now solved by nuclear magnetic resonance.
View Article and Find Full Text PDFThe MUC2 mucin polymer is the main building unit of the intestinal mucus layers separating intestinal microbiota from the host epithelium. The MUC2 mucin is a large glycoprotein with a C-terminal domain similar to the MUC5AC and MUC5B mucins and the von Willebrand factor (VWF). A structural model of the C-terminal part of MUC2, MUC2-C, was generated by combining Cryo-electron microscopy, AlphaFold prediction, information of its glycosylation, and small angle X-ray scattering information.
View Article and Find Full Text PDFIntestinal mucus barriers normally prevent microbial infections but are sensitive to diet-dependent changes in the luminal environment. Here we demonstrate that mice fed a Western-style diet (WSD) suffer regiospecific failure of the mucus barrier in the small intestinal jejunum caused by diet-induced mucus aggregation. Mucus barrier disruption due to either WSD exposure or chromosomal Muc2 deletion results in collapse of the commensal jejunal microbiota, which in turn sensitizes mice to atypical jejunal colonization by the enteric pathogen Citrobacter rodentium.
View Article and Find Full Text PDFThe colonic mucus layer is organized as a two-layered system providing a physical barrier against pathogens and simultaneously harboring the commensal flora. The factors contributing to the organization of this gel network are not well understood. In this study, the impact of transglutaminase activity on this architecture was analyzed.
View Article and Find Full Text PDFMucus forms an important protective barrier that minimizes bacterial contact with the colonic epithelium. Intestinal mucus is organized in a complex network with several specific proteins, including the mucin-2 (MUC2) and the abundant IgGFc-binding protein, FCGBP. FCGBP is expressed in all intestinal goblet cells and is secreted into the mucus.
View Article and Find Full Text PDFIn order to demonstrate transglutaminase activity in biological samples immunological as well as glutamine- and amine-donor based assays are commonly used. However, the identification of the transglutaminase reaction product, i. e.
View Article and Find Full Text PDFMost MUC5B mucin polymers in the upper airways of humans and pigs are produced by submucosal glands. MUC5B forms N-terminal covalent dimers that are further packed into larger assemblies because of low pH and high Ca in the secretory granule of the mucin-producing cell. We purified the recombinant MUC5B N-terminal covalent dimer and used single-particle electron microscopy to study its structure under intracellular conditions.
View Article and Find Full Text PDFA biomolecular ensemble exhibits different responses to a temperature gradient depending on its diffusion properties. MicroScale Thermophoresis technique exploits this effect and is becoming a popular technique for analyzing interactions of biomolecules in solution. When comparing affinities of related compounds, the reliability of the determined thermodynamic parameters often comes into question.
View Article and Find Full Text PDFClin Exp Pharmacol Physiol
June 2017
The goal of this study was to determine whether the guluronate (G) rich alginate OligoG CF-5/20 (OligoG) could detach cystic fibrosis (CF) mucus by calcium chelation, which is also required for normal mucin unfolding. Since bicarbonate secretion is impaired in CF, leading to insufficient mucin unfolding and thereby attached mucus, and since bicarbonate has the ability to bind calcium, we hypothesized that the calcium chelating property of OligoG would lead to detachment of CF mucus. Indeed, OligoG could compete with the N-terminus of the MUC2 mucin for calcium binding as shown by microscale thermophoresis.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
February 2017
Establishment, specification, and validation of synaptic connections are thought to be mediated by interactions between pre- and postsynaptic cell-adhesion molecules. Arguably, the best-characterized transsynaptic interactions are formed by presynaptic neurexins, which bind to diverse postsynaptic ligands. In a proteomic screen of neurexin-1 (Nrxn1) complexes immunoisolated from mouse brain, we identified carbonic anhydrase-related proteins CA10 and CA11, two homologous, secreted glycoproteins of unknown function that are predominantly expressed in brain.
View Article and Find Full Text PDFThe main structural component of the mucus in the gastrointestinal tract is the MUC2 mucin. It forms large networks that in colon build the loose outer mucous layer that provides the habitat for the commensal flora and the inner mucous layer that protects the epithelial cells by being impenetrable to bacteria. The epithelial cells in mice lacking MUC2 are not adequately protected from bacteria, resulting in inflammation and the development of colon cancer as found in human ulcerative colitis.
View Article and Find Full Text PDFUnlabelled: Oncogenic transformation is often associated with an increased expression of the cAMP response element binding (CREB) transcription factor controlling the expression of genes involved in cell proliferation, cell cycle, apoptosis, and tumor development, but a link between K-RAS(V12)-induced transformation and CREB has not yet been determined. Therefore, the constitutive and/or inhibitor-regulated mRNA and protein expression of CREB and signal transduction components and growth properties of parental fibroblasts, K-RAS(V12)-transformed counterparts, shCREB K-RAS(V12) transfectants and human colon carcinoma cells were determined. Increased CREB transcript and protein levels accompanied by an enhanced CREB activity was detected in K-RAS(V12)-transformed murine fibroblasts and K-RAS(V12)-mutated human tumor cells, which is dependent on the MAPK/MEK, PI3K, and/or PKC signal transduction.
View Article and Find Full Text PDFLipid rafts play a key role in the regulation of fundamentally important cellular processes, including cell proliferation, differentiation, and survival. The composition of such detergent-resistant microdomains (DRMs) is altered under pathologic conditions, including cancer. Although DRMs have been analyzed in colorectal carcinoma little information exists about their composition upon treatment with targeted drugs.
View Article and Find Full Text PDFThe clinical outcome of adoptive T cell transfer-based immunotherapies is often limited due to different escape mechanisms established by tumors in order to evade the hosts' immune system. The establishment of an immunosuppressive micromilieu by tumor cells along with distinct subsets of tumor-infiltrating lymphocytes is often associated with oxidative stress that can affect antigen-specific memory/effector cytotoxic T cells thereby substantially reducing their frequency and functional activation. Therefore, protection of tumor-reactive cytotoxic T lymphocytes from oxidative stress may enhance the anti-tumor-directed immune response.
View Article and Find Full Text PDFThe extracellular matrix protein biglycan (Bgn) is a leucine-rich proteoglycan that is involved in the matrix assembly, cellular migration and adhesion, cell growth, and apoptosis. Although a distinct expression of Bgn was found in a number of human tumors, the role of this protein in the initiation and/or maintenance of neoplastic transformation has not been studied in detail. Using an in vitro model of oncogenic transformation, a down-regulation of Bgn expression as well as an altered secretion of different Bgn isoforms was found both in murine and human HER-2/neu oncogene-transformed cells when compared with HER-2/neu(-) cells.
View Article and Find Full Text PDFThe "two-signal paradigm" in T cell activation predicts that the cooperation of "signal 1," provided by the T cell receptor (TCR) through engagement of major histocompatility complex (MHC)-presented peptide, with "signal 2″ provided by costimulatory molecules, the prototype of which is CD28, is required to induce T cell effector functions. While the individual signalling pathways are well understood, little is known about global changes in the proteome pattern during TCR/CD28-mediated activation. Therefore, comparative 2-DE-based proteome analyses of CD3(+) CD69(-) resting T cells versus cells incubated with (i) the agonistic anti-CD3 antibody OKT3 mimicking signal 1 in absence or presence of IL-2 and/or with (ii) the agonistic antibody 15E8 triggering CD28-mediated signaling were performed.
View Article and Find Full Text PDFThe presentation of tumor antigen-derived peptides by human leukocyte antigen (HLA) class I surface antigens on tumor cells is a key prerequisite to trigger effective T-cell responses in cancer patients. Multiple complementary strategies like cDNA and serological expression cloning, reverse immunology and different 'ome'-based methods have been employed to identify potential T-cell targets. This report focuses on a ligandomic profiling approach leading to the identification of 49 naturally processed HLA class I peptide ligands presented on the cell surface of renal cell carcinoma (RCC) cells.
View Article and Find Full Text PDFDespite recent advances in the understanding of the biology of renal cell carcinoma (RCC) and the implementation of novel targeted therapies, the overall 5 years' survival rate for RCC patients remains disappointing. Late presentation, tumor heterogeneity and in particular the lack of molecular biomarkers for early detection and classification represent major obstacles. Global, untargeted comparative analysis of RCC vs tumor adjacent renal epithelium (NN) samples by high throughput analyses both at the transcriptome and proteome level have identified signatures, which might further clarify the molecular differences of RCC subtypes and might allow the identification of suitable therapeutic targets and diagnostic/prognostic biomarkers, but none thereof has yet been implemented in routine clinical use.
View Article and Find Full Text PDFThe prevention of mammary carcinoma by immunological strategies targeting the HER-2/neu receptor has proved to be effective in preclinical models. Thus, a well-characterized HER-2/neu oncogene-driven mammary carcinogenesis model was analysed by various profiling strategies following "triplex" vaccination to identify new candidate targets for breast cancer immunoprevention. 2-DE-based proteomic profiling of preneoplastic and tumour lesions versus normal and aged mammary tissue demonstrated that tumour progression was associated with an up-regulation of molecular chaperones including glucose-regulated protein (GRP)78 and of proteins favouring cell motility, which was in line with the corresponding transcriptomic profiling data.
View Article and Find Full Text PDFHER-2/neu overexpression in tumor cells caused abnormalities of MHC class I surface expression due to impaired expression of components of the antigen-processing machinery (APM) including the low molecular weight proteins, the transporter associated with antigen processing (TAP), and the chaperone tapasin, whereas the expression of MHC class I heavy chain as well as β(2)-microglobulin was only marginally affected. This oncogene-mediated deficient APM component expression could be reverted by interferon-γ treatment, suggesting a deregulation rather than structural alterations as underlying molecular mechanisms. To determine the level of regulation, the transcriptional activity of APM components was analyzed in HER-2/neu(-) and HER-2/neu(+) cells.
View Article and Find Full Text PDFProteome-based technologies represent powerful tools for the analysis of protein expression profiles, including the identification of potential cancer candidate biomarkers. Thus, here we provide a comprehensive protein expression map for clear cell renal cell carcinoma established by systematic comparative two-dimensional gel electrophoresis-based protein expression profiling of 16 paired tissue systems comprising clear cell renal cell carcinoma lesions and corresponding tumor-adjacent renal epithelium using overlapping narrow pH gradients. This approach led to the mapping of 348 distinct spots corresponding to 248 different protein identities.
View Article and Find Full Text PDFResults obtained from expression profilings of renal cell carcinoma using different "ome"-based approaches and comprehensive data analysis demonstrated that proteome-based technologies and cDNA microarray analyses complement each other during the discovery phase for disease-related candidate biomarkers. The integration of the respective data revealed the uniqueness and complementarities of the different technologies. While comparative cDNA microarray analyses though restricted to up-regulated targets largely revealed genes involved in controlling gene/protein expression (19%) and signal transduction processes (13%), proteomics/PROTEOMEX-defined candidate biomarkers include enzymes of the cellular metabolism (36%), transport proteins (12%), and cell motility/structural molecules (10%).
View Article and Find Full Text PDFMutated K-ras is frequently found in human malignancies and plays a key role in many signal transduction processes resulting in an altered gene and/or protein expression pattern. Proteins controlled by a constitutive activated mitogen-activated protein kinase pathway are primarily related to alterations in the mitochondrial and nuclear compartments. Therefore, different K-Ras mutants and respective control cells were subjected to two-dimensional gel electrophoresis using basic pH gradients.
View Article and Find Full Text PDFKi-ras gene mutations that specifically occur in codons 12, 13 and 61 are involved in the carcinogenesis of acute myeloid leukemia, melanoma and different carcinomas. In order to define potential mutation-specific therapeutic targets, stable transfectants of NIH3T3 cells carrying different Ki-ras4B gene mutations were generated. Wild type Ki-ras transformants, mock transfectants and parental cells served as controls.
View Article and Find Full Text PDF