Inverse problems continue to garner immense interest in the physical sciences, particularly in the context of controlling desired phenomena in non-equilibrium systems. In this work, we utilize a series of deep neural networks for predicting time-dependent optimal control fields, E(t), that enable desired electronic transitions in reduced-dimensional quantum dynamical systems. To solve this inverse problem, we investigated two independent machine learning approaches: (1) a feedforward neural network for predicting the frequency and amplitude content of the power spectrum in the frequency domain (i.
View Article and Find Full Text PDFA key need in cognitive training interventions is to personalize task difficulty to each user and to adapt this difficulty to continually apply appropriate challenges as users improve their skill to perform the tasks. Here we examine how Bayesian filtering approaches, such as hidden Markov models and Kalman filters, and deep-learning approaches, such as the long short-term memory (LSTM) model, may be useful methods to estimate user skill level and predict appropriate task challenges. A possible advantage of these models over commonly used adaptive methods, such as staircases or blockwise adjustment methods that are based only upon recent performance, is that Bayesian filtering and deep learning approaches can model the trajectory of user performance across multiple sessions and incorporate data from multiple users to optimize local estimates.
View Article and Find Full Text PDFIEEE Trans Image Process
December 2017
We propose a novel approach toward event detection in real-world continuous video sequences. The method: 1) is able to model arbitrary-order non-Markovian dependences in videos to mitigate local visual ambiguities; 2) conducts simultaneous event segmentation and labeling; and 3) is time-window free. The idea is to represent a video as an event stream of both high-level semantic events and low-level video observations.
View Article and Find Full Text PDFIEEE Trans Pattern Anal Mach Intell
October 2016
Many computer vision tasks are more difficult when tackled without contextual information. For example, in multi-camera tracking, pedestrians may look very different in different cameras with varying pose and lighting conditions. Similarly, head direction estimation in high-angle surveillance video in which human head images are low resolution is challenging.
View Article and Find Full Text PDFObjective: ICU resources may be overwhelmed by a mass casualty event, triggering a conversion to Crisis Standards of Care in which critical care support is diverted away from patients least likely to benefit, with the goal of improving population survival. We aimed to devise a Crisis Standards of Care triage allocation scheme specifically for children.
Design: A triage scheme is proposed in which patients would be divided into those requiring mechanical ventilation at PICU presentation and those not, and then each group would be evaluated for probability of death and for predicted duration of resource consumption, specifically, duration of PICU length of stay and mechanical ventilation.
Background: Ventilator management for children with hypoxemic respiratory failure may benefit from ventilator protocols, which rely on blood gases. Accurate noninvasive estimates for pH or P(aCO2) could allow frequent ventilator changes to optimize lung-protective ventilation strategies. If these models are highly accurate, they can facilitate the development of closed-loop ventilator systems.
View Article and Find Full Text PDFBackground: Profile HMMs (hidden Markov models) provide effective methods for modeling the conserved regions of protein families. A limitation of the resulting domain models is the difficulty to pinpoint their much shorter functional sub-features, such as catalytically relevant sequence motifs in enzymes or ligand binding signatures of receptor proteins.
Results: To identify these conserved motifs efficiently, we propose a method for extracting the most information-rich regions in protein families from their profile HMMs.