RNA ligands of retinoic acid-inducible gene I (RIG-I) are a promising class of oligonucleotide therapeutics with broad potential as antiviral agents, vaccine adjuvants, and cancer immunotherapies. However, their translation has been limited by major drug delivery barriers, including poor cellular uptake, nuclease degradation, and an inability to access the cytosol where RIG-I is localized. Here this challenge is addressed by engineering nanoparticles that harness covalent conjugation of 5'-triphospate RNA (3pRNA) to endosome-destabilizing polymers.
View Article and Find Full Text PDFACS Appl Bio Mater
February 2021
In recent years, there has been an increasing interest in designing delivery systems to enhance the efficacy of RNA-based therapeutics. Here, we have synthesized copolymers comprised of dimethylaminoethyl methacrylate (DMAEMA) or diethylaminoethyl methacrylate (DEAEMA) copolymerized with alkyl methacrylate monomers ranging from 2 to 12 carbons, and developed a high throughput workflow for rapid investigation of their applicability for mRNA delivery. The structure activity relationship revealed that the mRNA encapsulation efficiency is improved by increasing the cationic density and use of shorter alkyl side chains (2-6 carbons).
View Article and Find Full Text PDFRNA ligands of retinoic acid-inducible gene I (RIG-I) hold significant promise as antiviral agents, vaccine adjuvants, and cancer immunotherapeutics, but their efficacy is hindered by inefficient intracellular delivery to the cytosol where RIG-I is localized. Here, we address this challenge through the synthesis and evaluation of a library of polymeric carriers rationally designed to promote the endosomal escape of 5'-triphosphate RNA (3pRNA) RIG-I agonists. We synthesized a series of PEG--(DMAEMA--A MA) polymers, where A MA is an alkyl methacrylate monomer ranging from = 2-12 carbons, of variable composition, and examined effects of polymer structure on the intracellular delivery of 3pRNA.
View Article and Find Full Text PDFCyclic dinucleotide (CDN) agonists of stimulator of interferon genes (STING) hold great therapeutic potential, but their activity is hindered by poor drug-like properties that restrict cytosolic bioavailability. Here, this challenge is addressed through the synthesis and evaluation of a novel series of PEGMA-co-DEAEMA-co-BMA copolymers with pH-responsive, membrane-destabilizing activity to enhance intracellular delivery of the CDN, cGAMP. Copolymers are synthesized with PEGMA of two different molecular weights (300 and 950 Da) and over a range of PEG mass fraction and polymer molecular weight, and relationships between copolymer structure, self-assembly, endosomal escape, and cGAMP activity are elucidated.
View Article and Find Full Text PDFCancer vaccines targeting patient-specific neoantigens have emerged as a promising strategy for improving responses to immune checkpoint blockade. However, neoantigenic peptides are poorly immunogenic and inept at stimulating CD8 T cell responses, motivating a need for new vaccine technologies that enhance their immunogenicity. The stimulator of interferon genes (STING) pathway is an endogenous mechanism by which the innate immune system generates an immunological context for priming and mobilizing neoantigen-specific T cells.
View Article and Find Full Text PDFThe FoxP2 transcription factor and its target genes have been implicated in developmental brain diseases with a prominent language component, such as developmental verbal dyspraxia and specific language impairment. How FoxP2 affects neural circuitry development remains poorly understood. The sushi domain protein SRPX2 is a target of FoxP2, and mutations in SRPX2 are associated with language defects in humans.
View Article and Find Full Text PDFRetinoic acid-inducible gene I (RIG-I) is a cytosolic pattern recognition receptor (PRR) that potently activates antiviral innate immunity upon recognition of 5' triphosphorylated double-stranded RNA (pppRNA). Accordingly, RNA ligands of the RIG-I pathway have recently emerged as promising antiviral agents, vaccine adjuvants, and cancer immunotherapeutics. However, RIG-I is expressed constitutively in virtually all cell types, and therefore administration of RIG-I agonists causes risk for systemic inflammation and possible dose-limiting toxicities.
View Article and Find Full Text PDF