Focused electron beam-induced processing is a versatile method for the fabrication of metallic nanostructures with arbitrary shape, in particular, on top of two-dimensional (2D) organic materials, such as self-assembled monolayers (SAMs). Two methods, namely electron beam-induced deposition (EBID) and electron beam-induced surface activation (EBISA) are studied with the precursors Fe(CO) and Co(CO)NO on SAMs of 1,1',4',1''-terphenyl-4-thiol (TPT). For Co(CO)NO only EBID leads to deposits consisting of cobalt oxide.
View Article and Find Full Text PDFFunctional hybrids comprising metallic nanostructures connected and protected by nonmetallic 2D materials are envisioned as miniaturized components for applications in optics, electronics, and magnetics. A promising strategy to build such elements is the direct writing of metallic nanostructures by focused electron beam induced processing (FEBIP) onto insulating 2D materials. Carbon nanomembranes (CNMs), produced via electron-induced crosslinking of self-assembled monolayers (SAMs), are ultrathin and flexible films; their thickness as well as their mechanical and electrical properties are determined by the specific choice of self-assembling molecules.
View Article and Find Full Text PDFWe demonstrate that surface-anchored metal-organic frameworks (SURMOFs) are extraordinary well-suited as resists for high-resolution focused electron beam induced processing (FEBIP) techniques. The combination of such powerful lithographic protocols with the huge versatility of MOF materials are investigated in respect to their potential in nanostructures fabrication. The applied FEBIP methods rely on the local decomposition of Fe(CO) and Co(CO)NO as precursors, either by the direct impact of the focused electron beam (electron beam induced deposition, EBID) or through the interaction of the precursor molecules with preirradiated/activated SURMOF areas (electron beam induced surface activation, EBISA).
View Article and Find Full Text PDF