Publications by authors named "Christian Philouze"

We report the synthesis and characterization of two chiral binuclear iridium(III) complexes ( and ) prepared from enantiopure building blocks [μ-Cl(Δ-Ir(C^N))] and [μ-Cl(Λ-Ir(C^N))]. These building blocks have been obtained by chiral preparative high-performance liquid chromatography of the neutral iridium(III) complex (piv = 2,2,6,6-tetramethylheptane-3,5-dionate) followed by selective degradation of the ancillary ligand. For comparison purposes, we also synthesized a monomer () and a dimer (, mixture).

View Article and Find Full Text PDF

The synthesis of Mn and Cr nitride complexes of a pro-radical tetradentate bis-phenol bis-N-heterocyclic carbene ligand H2LC2O2 was investigated. Employing either azide photolysis of the Mn precursor complex MnLC2O2(N3) or a nitride exchange reaction between MnLC2O2(Br) and the nitride exchange reagent Mnsalen(N) failed to provide a useful route to the target nitride MnLC2O2(N). Experimental results support initial formation of the target nitride MnLC2O2(N), however, the nitride rapidly inserts into a Mn-C bond.

View Article and Find Full Text PDF

A novel tridentate ligand featuring an acridine core and pyrazole rings, namely 2,7- di-butyl-4,5-di(pyrazol-1-yl)acridine, , was designed and used to create two ruthenium(II) complexes: [Ru](PF) and [Ru(tpy)](PF). Surprisingly, the ligand adopted different coordination modes in the complexes: facial coordination for the homoleptic complex and meridional coordination for the heteroleptic complex. The electronic absorption and electrochemical properties were evaluated.

View Article and Find Full Text PDF

The cleavage of C-S bonds represents a crucial step in fossil fuel refinement to remove organosulfur impurities. Efforts are required to identify alternatives that can replace the energy-intensive hydrodesulfurization process currently in use. In this context, we have developed a series of bis-thiolato-ligated Cr complexes supported by the L ligand (L = 2,2'-bipyridine-6,6'-diyl(bis(1,1-diphenylethanethiolate), one of them displaying desulfurization of one thiolate of the ligand under reducing and acidic conditions at ambient temperature and atmospheric pressure.

View Article and Find Full Text PDF

The pigmentation of the skin, modulated by different actors in melanogenesis, is mainly due to the melanins (protective pigments). In humans, these pigments' precursors are synthetized by an enzyme known as tyrosinase (TyH). The regulation of the enzyme activity by specific modulators (inhibitors or activators) can offer a means to fight hypo- and hyper-pigmentations responsible for medical, psychological and societal handicaps.

View Article and Find Full Text PDF

We report the synthesis and characterization of ten neutral bisheteroleptic iridium(III) complexes with 2-phenylbenzimidazole cyclometallating ligand and picolinate as ancillary ligand. The 2-phenylbenzimidazole has been modified by selected substituents introduced on the cyclometallating ring and/or on the benzimidazole moiety. The integrity of the complexes has been assessed by NMR spectroscopy, by high-resolution mass spectrometry and by elemental analysis.

View Article and Find Full Text PDF

A family of bis(μ-hydroxido)dicopper(II,II) complexes bearing a naphthyridine-based scaffold has been synthesized and characterized. Cyclic voltammetry reveals that the nature of the anions present in the complexes plays a pivotal role in their electrochemical properties. X-ray diffraction, spectroscopic and electrochemical analysis data support the formation of intimate ion pairs by non-covalent interactions driving to a 270 mV difference for the potential required to monooxidize the CuCu species.

View Article and Find Full Text PDF

We report the isolation and study of dimers stemming from popular thiazol-2-ylidene organocatalysts. The model featuring 2,6-di(isopropyl)phenyl (Dipp) N-substituents was found to be a stronger reducing agent ( = -0.8 V vs SCE) than bis(thiazol-2-ylidenes) previously studied in the literature.

View Article and Find Full Text PDF

During the last decade, the evidence for the biological relevance of i-motif DNA (i-DNA) has been accumulated. However, relatively few molecules were reported to interact with i-DNA, and a controversy concerning their binding mode, affinity, and selectivity persists in the literature. In this context, the cholestane derivative has been reported to modulate gene expression by stabilizing an i-motif structure in its promoter.

View Article and Find Full Text PDF
Article Synopsis
  • The study aims to explore the chemical composition of an alpine endemic plant species, which is still largely unknown despite past research on its genus.
  • The researchers employed chromatography and mass spectrometry techniques to analyze 95% of the plant's extracted mass, identifying several compounds, including two new iridoids and three polyphenols.
  • The evaluated extracts demonstrated significant biological activity, particularly in promoting epidermal renewal, suggesting potential cosmetic applications for anti-aging products.
View Article and Find Full Text PDF

In human, Tyrosinase enzyme (TyH) is involved in the key steps of protective pigments biosynthesis (in skin, eyes and hair). The use of molecules targeting its binuclear copper active site represents a relevant strategy to regulate TyH activities. In this work, we targeted 2-Hydroxypyridine-N-oxide analogs (HOPNO, an established chelating group for the tyrosinase dicopper active site) with the aim to combine effects induced by combination with a reference inhibitor (kojic acid) or natural substrate (tyrosine).

View Article and Find Full Text PDF

Microvesicles (MVs) are key markers in human body fluids that reflect cellular activation related to diseases as thrombosis. These MVs display phosphatidylserine at the outer leaflet of their plasma membrane as specific recognition moieties. The work reported in this manuscript focuses on the development of an original method where MVs are captured by bimetallic zinc complexes.

View Article and Find Full Text PDF

A new ligand, namely, 2-(5-(pyren-1-yl)pentyl)-9-methyl-1,10-phenanthroline, as well as new bis(2,9-dialkyl-1,10-phenanthroline)copper(II) complexes were designed, which were immobilized on multiwalled carbon nanotube (MWCNT) electrodes. These complexes show a high tendency of autoreduction into their copper(I) form according to electrochemical and EPR experiments. These complexes exhibit strong interactions with MWCNT sidewalls either with or without anchor functions such as the pyrene moiety.

View Article and Find Full Text PDF

The pharmaceutical industry has a pervasive need for chiral specific molecules with optimal affinity for their biological targets. However, the mass production of such compounds is currently limited by conventional chemical routes, that are costly and have an environmental impact. Here, we propose an easy access to obtain new tetrahydroquinolines, a motif found in many bioactive compounds, that is rapid and cost effective.

View Article and Find Full Text PDF

A phenanthrene unit has been functionalized by several methylthiophene units in order to bring it a photochromic behavior. These compounds were characterized by NMR, absorption and emission spectroscopies, theoretical calculations as well as cyclic voltammetry. The association of a phenanthrene group with a photochromic center could open the door to a new generation of organic field-effect transistors.

View Article and Find Full Text PDF

We report the synthesis and the characterization of a new cationic iridium(III) complex featuring two 1-(-methoxyphenyl)-5-methoxybenzimidazole cyclometallating ligands and a dimethylbipyridine ancillary ligand. The complex has been fully characterized by 1D and 2D NMR (H, C, F and P), elemental analysis and high-resolution mass spectrometry (HRMS). The photoluminescence studies performed in a solution, on amorphous powder and on crystals revealed an unexpected behavior.

View Article and Find Full Text PDF

A dimethyldihydropyrene (DHP) photochromic unit has been functionalized by donor (triphenylamine group) and acceptor (methylpyridinium) substituents. This compound was characterized by NMR, absorption and emission spectroscopies as well as cyclic voltammetry, and its properties were rationalized by theoretical calculations. The incorporation of both electron-donor and -withdrawing groups at the photochromic center allows i) an efficient photo-isomerization of the system when illuminated at low energy (quantum yield: Φ =13.

View Article and Find Full Text PDF

The bis-triazole ligand and its corresponding copper complexes were synthesized and characterized for the first time and proposed as new labels for the development of electrochemical aptasensors. The bis-triazole ligand was prepared from methyl 1,6-heptadiyne-4-carboxylate and 2-(azidomethyl)phenol using classical CuAAC in presence of different copper salts. The X-ray structure of bis-triazole showed a symmetry center (C1).

View Article and Find Full Text PDF

Unprotected mononuclear pyrene-modified (bispyridylaminomethyl)methylphenol copper complexes were designed to be immobilized at multiwalled carbon nanotube (MWCNT) electrodes and form dinuclear bis(μ-phenolato) complexes on the surface. These complexes exhibit a high oxygen reduction reaction activity of 12.7 mA cm and an onset potential of 0.

View Article and Find Full Text PDF

Bicyclic compounds bearing a quaternary stereogenic center have been obtained using asymmetric intramolecular Buchner reaction with excellent yields and level of enantioselectivity. X-ray crystallography determination of the absolute configuration of one product has led to the serendipitous observation of an unusual behavior within the crystal structure, with equilibrating norcaradiene and cycloheptatriene valence isomers at the solid state, as well as an even more unexpected intermediate form. DFT calculations were performed to support these observations.

View Article and Find Full Text PDF

Tyrosinase enzymes (Tys) are involved in the key steps of melanin (protective pigments) biosynthesis and molecules targeting the binuclear copper active site on tyrosinases represent a relevant strategy to regulate enzyme activities. In this work, the possible synergic effect generated by a combination of known inhibitors is studied. For this, derivatives containing kojic acid (KA) and 2-hydroxypyridine-N-oxide (HOPNO) combined with a thiosemicarbazone (TSC) moiety were synthetized.

View Article and Find Full Text PDF

The Breast Cancer Resistance Protein (BCRP/ABCG2) belongs to the G class of ABC (ATP-Binding Cassette) proteins, which is known as one of the main transporters involved in the multidrug resistance (MDR) phenotype that confer resistance to anticancer drugs. The aim of this study was to design, synthesize and develop new potent and selective inhibitors of BCRP that can be used to abolish MDR and potentialize clinically used anticancer agents. In previous reports, we showed the importance of chromone scaffold and hydrophobicity for the inhibition of ABC transporters.

View Article and Find Full Text PDF

The ligands '-bis(3--butyl-5-methoxysalicylidene)-1,2-ethanediamine and '-bis(3--butyl-5-methoxysalicylidene)-1,3-propanediamine were chelated to V(IV)═O (, ), Cu(II) (, ), Co(II) (), and Co(III) (). The X-ray crystal structures of - were solved. The vanadium center in - resides in square pyramidal geometry, with an axially bound oxo ligand, whereas the metal ion displays a tetrahedrally distorted square planar geometry in -.

View Article and Find Full Text PDF

Iron centers featuring thiolates in their metal coordination sphere (as ligands or substrates) are well-known to activate dioxygen. Both heme and non-heme centers that contain iron-thiolate bonds are found in nature. Investigating the ability of iron-thiolate model complexes to activate O is expected to improve the understanding of the key factors that direct reactivity to either iron or sulfur.

View Article and Find Full Text PDF

Three iridium photosensitizers, [Ir(dCFppy)(N-N)], where N-N is 1,4,5,8-tetraazaphenanthrene (TAP), pyrazino[2,3-]phenazine (pzph), or benzo[]pyrazino[2,3-]phenazine (bpph) and dCFppy is 2-(3,5-bis(trifluoromethyl-phenyl)pyridine), were found to be remarkably strong photo-oxidants with enhanced light absorption in the visible region. In particular, judicious ligand design provided access to , with a molar absorption coefficient, ε = 9800 M cm, at 450 nm and an excited-state reduction potential, (Ir) = 1.76 V vs NHE.

View Article and Find Full Text PDF