Dimerization of the thrombopoietin receptor (TpoR) is necessary for receptor activation and downstream signaling through activated Janus kinase 2. We have shown previously that different orientations of the transmembrane (TM) helices within a receptor dimer can lead to different signaling outputs. Here we addressed the structural basis of activation for receptor mutations S505N and W515K that induce myeloproliferative neoplasms.
View Article and Find Full Text PDFCalreticulin (CALR) frameshift mutations represent the second cause of myeloproliferative neoplasms (MPN). In healthy cells, CALR transiently and non-specifically interacts with immature N-glycosylated proteins through its N-terminal domain. Conversely, CALR frameshift mutants turn into rogue cytokines by stably and specifically interacting with the Thrombopoietin Receptor (TpoR), inducing its constitutive activation.
View Article and Find Full Text PDFMutant calreticulin (CALR) proteins resulting from a -1/+2 frameshifting mutation of the CALR exon 9 carry a novel C-terminal amino acid sequence and drive the development of myeloproliferative neoplasms (MPNs). Mutant CALRs were shown to interact with and activate the thrombopoietin receptor (TpoR/MPL) in the same cell. We report that mutant CALR proteins are secreted and can be found in patient plasma at levels up to 160 ng/mL, with a mean of 25.
View Article and Find Full Text PDFPrimary myelofibrosis (PMF) is a myeloproliferative neoplasm characterized by the clonal expansion of myeloid cells, notably megakaryocytes (MKs), and an aberrant cytokine production leading to bone marrow (BM) fibrosis and insufficiency. Current treatment options are limited. TGF-β1, a profibrotic and immunosuppressive cytokine, is involved in PMF pathogenesis.
View Article and Find Full Text PDFPhiladelphia-negative classical Myeloproliferative Neoplasms (MPNs), including Polycythemia Vera (PV), Essential Thrombocythemia (ET) and Primary Myelofibrosis (PMF), are clonal hemopathies that emerge in the hematopoietic stem cell (HSC) compartment. MPN driver mutations are restricted to specific exons (14 and 12) of Janus kinase 2 (JAK2), thrombopoietin receptor (MPL/TPOR) and calreticulin (CALR) genes, are involved directly in clonal myeloproliferation and generate the MPN phenotype. As a result, an increased number of fully functional erythrocytes, platelets and leukocytes is observed in the peripheral blood.
View Article and Find Full Text PDFSince the discovery of JAK2 V617F as a highly prevalent somatic acquired mutation in the majority of myeloproliferative neoplasms (MPNs), it has become clear that these diseases are driven by pathologic activation of JAK2 and eventually of STAT5 and other members of the STAT family. The concept was strengthened by the discovery of the other activating driver mutations in MPL (thrombopoietin receptor, TpoR) and in calreticulin gene, which all lead to persistent activation of wild type JAK2. Although with a rare frequency, MPNs can evolve to secondary acute myeloid leukemia (sAML), a condition that is resistant to treatment.
View Article and Find Full Text PDFOptic atrophy 1 (OPA1), a GTPase at the inner mitochondrial membrane involved in regulating mitochondrial fusion, stability, and energy output, is known to be crucial for neural development: Opa1 heterozygous mice show abnormal brain development, and inactivating mutations in OPA1 are linked to human neurological disorders. Here, we used genetically modified human embryonic and patient-derived induced pluripotent stem cells and reveal that OPA1 haploinsufficiency leads to aberrant nuclear DNA methylation and significantly alters the transcriptional circuitry in neural progenitor cells (NPCs). For instance, expression of the forkhead box G1 transcription factor, which is needed for GABAergic neuronal development, is repressed in OPA1+/- NPCs.
View Article and Find Full Text PDFCalreticulin (CALR) +1 frameshift mutations in exon 9 are prevalent in myeloproliferative neoplasms. Mutant CALRs possess a new C-terminal sequence rich in positively charged amino acids, leading to activation of the thrombopoietin receptor (TpoR/MPL). We show that the new sequence endows the mutant CALR with rogue chaperone activity, stabilizing a dimeric state and transporting TpoR and mutants thereof to the cell surface in states that would not pass quality control; this function is absolutely required for oncogenic transformation.
View Article and Find Full Text PDFBackground: Janus kinase (JAK) 2 plays pivotal roles in signaling by several cytokine receptors. The mutant JAK2 V617F is the most common molecular event associated with myeloproliferative neoplasms. Selective targeting of the mutant would be ideal for treating these pathologies by sparing essential JAK2 functions.
View Article and Find Full Text PDFMethods Mol Biol
February 2019
An inhibitor for the thrombopoietin receptor (TpoR) would be more specific for the treatment of myeloproliferative neoplasms (MPNs) due to constitutively active mutant TpoR compared to the current treatment approach of inhibiting Janus kinase 2 (JAK2). We describe a cell-based high-throughput phenotypic screening approach to identify inhibitors for constitutively active mutant TpoR. A stepwise elimination process is used to differentiate generally cytotoxic compounds from compounds that specifically inhibit growth of cells expressing wild-type TpoR and/or mutant TpoR.
View Article and Find Full Text PDFMaintenance of genomic integrity is crucial for the preservation of hematopoietic stem cell (HSC) potential. Retrotransposons, spreading in the genome through an RNA intermediate, have been associated with loss of self-renewal, aging, and DNA damage. However, their role in HSCs has not been addressed.
View Article and Find Full Text PDFA well-functioning hematopoietic system requires a certain robustness and flexibility to maintain appropriate quantities of functional mature blood cells, such as red blood cells and platelets. This review focuses on the cytokine receptor that plays a significant role in thrombopoiesis: the receptor for thrombopoietin (TPO-R; also known as MPL). Here, we survey the work to date to understand how this receptor functions at a molecular level throughout its lifecycle, from traffic to the cell surface, dimerization and binding cognate cytokine its extracellular domain, through to its subsequent activation of associated Janus kinases and initiation of downstream signaling pathways, as well as the regulation of these processes.
View Article and Find Full Text PDFThe mechanisms behind the hereditary thrombocytosis induced by the thrombopoietin (THPO) receptor MPL P106L mutant remain unknown. A complete trafficking defect to the cell surface has been reported, suggesting either weak constitutive activity or nonconventional THPO-dependent mechanisms. Here, we report that the thrombocytosis phenotype induced by MPL P106L belongs to the paradoxical group, where low MPL levels on platelets and mature megakaryocytes (MKs) lead to high serum THPO levels, whereas weak but not absent MPL cell-surface localization in earlier MK progenitors allows response to THPO by signaling and amplification of the platelet lineage.
View Article and Find Full Text PDFBackground: Rather than a Janus Kinase 2 inhibitor (ruxolitinib), a specific thrombopoietin receptor (TpoR) inhibitor would be more specific for the treatment of myeloproliferative neoplasms due to TpoR mutations.
Objective: A cell-based phenotypic approach to identify specific TpoR inhibitors was implemented and a library of 505,483 small molecules was screened for inhibitory effects on cells transformed by TpoR mutants.
Results: Among the identified hits are two analogs of 3-(4-piperidinyl) indole.
The role of somatic JAK2 mutations in clonal myeloproliferative neoplasms (MPNs) is well established. Recently, germ line JAK2 mutations were associated with polyclonal hereditary thrombocytosis and triple-negative MPNs. We studied a patient who inherited 2 heterozygous JAK2 mutations, E846D from the mother and R1063H from the father, and exhibited erythrocytosis and megakaryocytic atypia but normal platelet number.
View Article and Find Full Text PDFMutations in the calreticulin gene (CALR) represented by deletions and insertions in exon 9 inducing a -1/+2 frameshift are associated with a significant fraction of myeloproliferative neoplasms (MPNs). The mechanisms by which CALR mutants induce MPN are unknown. Here, we show by transcriptional, proliferation, biochemical, and primary cell assays that the pathogenic CALR mutants specifically activate the thrombopoietin receptor (TpoR/MPL).
View Article and Find Full Text PDFThe main molecular basis of essential thrombocythemia and hereditary thrombocytosis is acquired, and germ-line-activating mutations affect the thrombopoietin signaling axis. We have identified 2 families with hereditary thrombocytosis presenting novel heterozygous germ-line mutations of JAK2. One family carries the JAK2 R867Q mutation located in the kinase domain, whereas the other presents 2 JAK2 mutations, S755R/R938Q, located in cis in both the pseudokinase and kinase domains.
View Article and Find Full Text PDFCurrent JAK2 inhibitors used for myeloproliferative neoplasms (MPN) treatment are not specific enough to selectively suppress aberrant JAK2 signalling and preserve physiological JAK2 signalling. We tested whether combining a JAK2 inhibitor with a series of serine threonine kinase inhibitors, targeting nine signalling pathways and already used in clinical trials, synergized in inhibiting growth of haematopoietic cells expressing mutant and wild-type forms of JAK2 (V617F) or thrombopoietin receptor (W515L). Out of 15 kinase inhibitors, the ZSTK474 phosphatydylinositol-3'-kinase (PI3K) inhibitor molecule showed strong synergic inhibition by Chou and Talalay analysis with JAK2 and JAK2/JAK1 inhibitors.
View Article and Find Full Text PDFThe discovery of the highly prevalent activating JAK (Janus kinase) 2 V617F mutation in myeloproliferative neoplasms, and of other pseudokinase domain-activating mutations in JAK2, JAK1 and JAK3 in blood cancers, prompted great interest in understanding how pseudokinase domains regulate kinase domains in JAKs. Recent functional and mutagenesis studies identified residues required for the V617F mutation to induce activation. Several X-ray crystal structures of either kinase or pseudokinase domains including the V617F mutant of JAK2 pseudokinase domains are now available, and a picture has emerged whereby the V617F mutation induces a defined conformational change around helix C of JH (JAK homology) 2.
View Article and Find Full Text PDFWhether signals mediated via growth factor receptors (GFRs) might influence lineage fate in multipotent progenitors (MPPs) is unclear. We explored this issue in a mouse knockin model of gain-of-function Flt3-ITD mutation because FLT3-ITDs are paradoxically restricted to acute myeloid leukemia even though Flt3 primarily promotes lymphoid development during normal hematopoiesis. When expressed in MPPs, Flt3-ITD collaborated with Runx1 mutation to induce high-penetrance aggressive leukemias that were exclusively of the myeloid phenotype.
View Article and Find Full Text PDFThe association between somatic JAK2 mutation and myeloproliferative neoplasms (MPNs) is now well established. However, because JAK2 mutations are associated with heterogeneous clinical phenotypes and often occur as secondary genetic events, some aspects of JAK2 mutation biology remain to be understood. We recently described a germline JAK2V617I mutation in a family with hereditary thrombocytosis and herein characterize the hematopoietic and signaling impact of JAK2V617I.
View Article and Find Full Text PDF