Publications by authors named "Christian O Pritz"

Background: Sensory systems evolved intricate designs to accurately encode perplexing environments. However, this encoding task may become particularly challenging for animals harboring a small number of sensory neurons. Here, we studied how the compact resource-limited chemosensory system of Caenorhabditis elegans uniquely encodes a range of chemical stimuli.

View Article and Find Full Text PDF

We would like to make our readers aware of the publication by Cohen et al., which reports irrational behaviour in C. elegans olfactory preference[1] .

View Article and Find Full Text PDF

C. elegans worms exhibit a natural chemotaxis towards food cues. This provides a potential platform to study the interactions between stimulus valence and innate behavioral preferences.

View Article and Find Full Text PDF

Organisms' capacity to anticipate future conditions is key for survival. Associative memories are instrumental for learning from past experiences, yet little is known about the processes that follow memory retrieval and their potential advantage in preparing for impending developments. Here, using C.

View Article and Find Full Text PDF

Aim: Systemic pharmacotherapies have limitation due to blood-labyrinth barrier, so local delivery via the round window membrane opens a path for effective treatment. Multifunctional nanoparticle (NP)-mediated cell specific drug delivery may enhance efficacy and reduce side effects. Different NPs with ligands to target TrkB receptor were tested.

View Article and Find Full Text PDF

Sprouty (Spry) proteins are negative feedback inhibitors of receptor tyrosine kinase signaling. Downregulation of Spry2 has been demonstrated to promote elongative axon growth of cultured peripheral and central neurons. Here, we analyzed Spry2 global knockout mice with respect to axon outgrowth in vitro and peripheral axon regeneration in vivo.

View Article and Find Full Text PDF

The highly compartmentalized anatomy of the ear aggravates drug delivery, which is used to combat hearing-related diseases. Novel nanosized drug vehicles are thought to overcome the limitations of classic approaches. In this article, we summarize the nanotechnology-based efforts involving nano-objects, such as liposomes, polymersomes, lipidic nanocapsules and poly(lactic-co-glycolic acid) nanoparticles, as well as nanocoatings of implants to provide an efficient means for drug transfer in the ear.

View Article and Find Full Text PDF

Numerous studies on nanocarriers use fluorescent dye labeling to investigate their biodistribution or cellular trafficking. However, when the fluorescence dye is not grafted to the nanocarrier, the question of the stability of the labeling arises. How can it be validated that the fluorescence observed during an experiment corresponds to the nanocarriers, and not to the free dye released from the nanocarriers? Studying the integrity of the labeling is challenging.

View Article and Find Full Text PDF

Background: Due to their biochemical versatility, nanoparticles (NPs) have become one of the most important future carriers for drugs and genes. NP-mediated delivery could enable an effective pharmacotherapy to the inner ear and combat hearing loss.

Aims: This study investigates the endocytic trafficking of silica NPs within HEI-OC1 cells, a cell line derived from the inner ear.

View Article and Find Full Text PDF