Publications by authors named "Christian Nitsch"

Proton therapy makes use of the favorable depth-dose distribution with its characteristic Bragg peak to spare normal tissue distal of the target volume. A steep dose gradient would be desired in lateral dimensions, too. The widespread spot scanning delivery technique is based, however, on pencil-beams with in-air spot full-widths-at-half-maximum of typically 1 cm or more.

View Article and Find Full Text PDF

Collimating apertures are used in proton therapy to laterally conform treatment fields to the target volume. While this is a standard technique in passive spreading treatment heads, patient-specific apertures can supplement pencil-beam scanning (PBS) techniques to sharpen the lateral dose fall-off. A radiation protection issue is that proton-induced nuclear reactions can lead to the formation of radionuclides in the apertures.

View Article and Find Full Text PDF

The Dortmund Low Background Facility is a germanium gamma-ray spectrometry laboratory situated above ground. A massive artificial shielding, corresponding to 10m of water equivalent in combination with an active muon veto results in a background level comparable to laboratories situated underground. Due to the recent completion of the muon veto, the background is lowered by 20% compared to previously reported values (Gastrich et al.

View Article and Find Full Text PDF

The Dortmund Low Background Facility is an instrument for low-level gamma ray spectrometry with an artificial overburden of ten meters of water equivalent, an inner shielding, featuring a neutron absorber, and an active muon veto. An integral background count rate between 40keV and 2700keV of (2.528±0.

View Article and Find Full Text PDF