To address the challenge of performance portability and facilitate the implementation of electronic structure solvers, we developed the basic matrix library (BML) and Parallel, Rapid O(N), and Graph-based Recursive Electronic Structure Solver (PROGRESS) library. The BML implements linear algebra operations necessary for electronic structure kernels using a unified user interface for various matrix formats (dense and sparse) and architectures (CPUs and GPUs). Focusing on density functional theory and tight-binding models, PROGRESS implements several solvers for computing the single-particle density matrix and relies on BML.
View Article and Find Full Text PDFMatrix diagonalization is almost always involved in computing the density matrix needed in quantum chemistry calculations. In the case of modest matrix sizes (≲4000), performance of traditional dense diagonalization algorithms on modern GPUs is underwhelming compared to the peak performance of these devices. This motivates the exploration of alternative algorithms better suited to these types of architectures.
View Article and Find Full Text PDFA shadow molecular dynamics scheme for flexible charge models is presented where the shadow Born-Oppenheimer potential is derived from a coarse-grained approximation of range-separated density functional theory. The interatomic potential, including the atomic electronegativities and the charge-independent short-range part of the potential and force terms, is modeled by the linear atomic cluster expansion (ACE), which provides a computationally efficient alternative to many machine learning methods. The shadow molecular dynamics scheme is based on extended Lagrangian (XL) Born-Oppenheimer molecular dynamics (BOMD) [ , , 164].
View Article and Find Full Text PDFIn Born-Oppenheimer molecular dynamics (BOMD) simulations based on the density functional theory (DFT), the potential energy and the interatomic forces are calculated from an electronic ground state density that is determined by an iterative self-consistent field optimization procedure, which, in practice, never is fully converged. The calculated energies and forces are, therefore, only approximate, which may lead to an unphysical energy drift and instabilities. Here, we discuss an alternative shadow BOMD approach that is based on backward error analysis.
View Article and Find Full Text PDFWe propose a systematic method to construct crystal-based molecular structures often needed as input for computational chemistry studies. These structures include crystal 'slabs' with periodic boundary conditions (PBCs) and non-periodic solids such as Wulff structures. We also introduce a method to build crystal slabs with orthogonal PBC vectors.
View Article and Find Full Text PDFGraph-based linear scaling electronic structure theory for quantum-mechanical molecular dynamics simulations [A. M. N.
View Article and Find Full Text PDFThe efficient calculation of the centrality or "hierarchy" of nodes in a network has gained great relevance in recent years due to the generation of large amounts of data. The eigenvector centrality (aka eigencentrality) is quickly becoming a good metric for centrality due to both its simplicity and fidelity. In this work we lay the foundations for solving the eigencentrality problem of ranking the importance of the nodes of a network with scores from the eigenvector of the network, using quantum computational paradigms such as quantum annealing and gate-based quantum computing.
View Article and Find Full Text PDFTime-independent quantum response calculations are performed using Tensor cores. This is achieved by mapping density matrix perturbation theory onto the computational structure of a deep neural network. The main computational cost of each deep layer is dominated by tensor contractions, i.
View Article and Find Full Text PDFDensity matrix electronic structure theory is used in many quantum chemistry methods to "alleviate" the computational cost that arises from directly using wave functions. Although density matrix based methods are computationally more efficient than wave function based methods, significant computational effort is involved. Because the Schrödinger equation needs to be solved as an eigenvalue problem, the time-to-solution scales cubically with the system size in mean-field type approaches such as Hartree-Fock and density functional theory and is solved as many times in order to reach charge or field self-consistency.
View Article and Find Full Text PDFWe describe an algorithm to compute the extremal eigenvalues and corresponding eigenvectors of a symmetric matrix which is based on solving a sequence of Quadratic Binary Optimization problems. This algorithm is robust across many different classes of symmetric matrices; It can compute the eigenvector/eigenvalue pair to essentially any arbitrary precision, and with minor modifications, can also solve the generalized eigenvalue problem. Performance is analyzed on small random matrices and selected larger matrices from practical applications.
View Article and Find Full Text PDFTensor cores, along with tensor processing units, represent a new form of hardware acceleration specifically designed for deep neural network calculations in artificial intelligence applications. Tensor cores provide extraordinary computational speed and energy efficiency but with the caveat that they were designed for tensor contractions (matrix-matrix multiplications) using only low-precision floating-point operations. Despite this perceived limitation, we demonstrate how tensor cores can be applied with high efficiency to the challenging and numerically sensitive problem of quantum-based Born-Oppenheimer molecular dynamics, which requires highly accurate electronic structure optimizations and conservative force evaluations.
View Article and Find Full Text PDFThe possibility of using quantum computers for electronic structure calculations has opened up a promising avenue for computational chemistry. Towards this direction, numerous algorithmic advances have been made in the last five years. The potential of quantum annealers, which are the prototypes of adiabatic quantum computers, is yet to be fully explored.
View Article and Find Full Text PDFWe present a second-order recursive Fermi-operator expansion scheme using mixed precision floating point operations to perform electronic structure calculations using tensor core units. A performance of over 100 teraFLOPs is achieved for half-precision floating point operations on Nvidia's A100 tensor core units. The second-order recursive Fermi-operator scheme is formulated in terms of a generalized, differentiable deep neural network structure, which solves the quantum mechanical electronic structure problem.
View Article and Find Full Text PDFQuantum chemistry is interested in calculating ground and excited states of molecular systems by solving the electronic Schrödinger equation. The exact numerical solution of this equation, frequently represented as an eigenvalue problem, remains unfeasible for most molecules and requires approximate methods. In this paper we introduce the use of Quantum Community Detection performed using the D-Wave quantum annealer to reduce the molecular Hamiltonian matrix in Slater determinant basis without chemical knowledge.
View Article and Find Full Text PDFA very important problem in combinatorial optimization is the partitioning of a network into communities of densely connected nodes; where the connectivity between nodes inside a particular community is large compared to the connectivity between nodes belonging to different ones. This problem is known as community detection, and has become very important in various fields of science including chemistry, biology and social sciences. The problem of community detection is a twofold problem that consists of determining the number of communities and, at the same time, finding those communities.
View Article and Find Full Text PDFIsomer search or molecule enumeration refers to the problem of finding all the isomers for a given molecule. Many classical search methods have been developed in order to tackle this problem. However, the availability of quantum computing architectures has given us the opportunity to address this problem with new (quantum) techniques.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
December 2018
Determining the principal energy-transfer pathways responsible for allosteric communication in biomolecules remains challenging, partially due to the intrinsic complexity of the systems and the lack of effective characterization methods. In this work, we introduce the eigenvector centrality metric based on mutual information to elucidate allosteric mechanisms that regulate enzymatic activity. Moreover, we propose a strategy to characterize the range of correlations that underlie the allosteric processes.
View Article and Find Full Text PDFRecursive Fermi-operator expansion methods for the calculation of the idempotent density matrix are valid only at zero electronic temperature with integer occupation numbers. We show how such methods can be modified to include fractional occupation numbers of an approximate or pseudo Fermi-Dirac distribution and how the corresponding entropy term of the free energy is calculated. The proposed methodology is demonstrated and evaluated for different electronic structure methods, including density functional tight-binding theory, Kohn-Sham density functional theory using numerical orbitals, and quantum chemistry Hartree-Fock theory using Gaussian basis functions.
View Article and Find Full Text PDFSolving flow and transport through complex geometries such as porous media is computationally difficult. Such calculations usually involve the solution of a system of discretized differential equations, which could lead to extreme computational cost depending on the size of the domain and the accuracy of the model. Geometric simplifications like pore networks, where the pores are represented by nodes and the pore throats by edges connecting pores, have been proposed.
View Article and Find Full Text PDFThe development of molecular components functioning as switches, rectifiers or amplifiers is a great challenge in molecular electronics. A desirable property of such components is functional robustness, meaning that the intrinsic functionality of components must be preserved regardless of the strategy used to integrate them into the final assemblies. Here, this issue is investigated for molecular diodes based on N-phenylbenzamide (NPBA) backbones.
View Article and Find Full Text PDFWe show how graph theory can be combined with quantum theory to calculate the electronic structure of large complex systems. The graph formalism is general and applicable to a broad range of electronic structure methods and materials, including challenging systems such as biomolecules. The methodology combines well-controlled accuracy, low computational cost, and natural low-communication parallelism.
View Article and Find Full Text PDFWe present a reduced complexity algorithm to compute the inverse overlap factors required to solve the generalized eigenvalue problem in a quantum-based molecular dynamics (MD) simulation. Our method is based on the recursive, iterative refinement of an initial guess of Z (inverse square root of the overlap matrix S). The initial guess of Z is obtained beforehand by using either an approximate divide-and-conquer technique or dynamical methods, propagated within an extended Lagrangian dynamics from previous MD time steps.
View Article and Find Full Text PDFWe report a systematic computational search of molecular frameworks for intrinsic rectification of electron transport. The screening of molecular rectifiers includes 52 molecules and conformers spanning over 9 series of structural motifs. N-Phenylbenzamide is found to be a promising framework with both suitable conductance and rectification properties.
View Article and Find Full Text PDFWe investigate the electron injection from a terrylene-based chromophore to the TiO2 semiconductor bridged by a recently proposed phenyl-amide-phenyl molecular rectifier. The mechanism of electron transfer is studied by means of quantum dynamics simulations using an extended Hückel Hamiltonian. It is found that the inclusion of the nuclear motion is necessary to observe the photoinduced electron transfer.
View Article and Find Full Text PDFDespite the importance of terpenes in biology, the environment, and catalysis, their vibrational spectra remain unassigned. Here, we present subwavenumber high-resolution broad-band sum frequency generation (HR-BB-SFG) spectra of the common terpene (+)-α-pinene that reveal 10 peaks in the C-H stretching region at room temperature. The high spectral resolution resulted in spectra with more and better resolved spectral features than those of the Fourier transform infrared, femtosecond stimulated Raman spectra in the bulk condensed phase and those of the conventional BB-SFG and scanning SFG spectroscopy of the same molecule on a surface.
View Article and Find Full Text PDF