Formed in 2000 at Virginia Commonwealth University, the Center for Bioelectronics, Biosensors and Biochips (C3B®) has subsequently been located at Clemson University and at Texas A&M University. Established as an industry-university collaborative center of excellence, the C3B has contributed new knowledge and technology in the areas of i) molecular bioelectronics, ii) responsive polymers, iii) multiplexed biosensor systems, and iv) bioelectronic biosensors. Noteworthy contributions in these areas include i) being the first to report direct electron transfer of oxidoreductase enzymes enabled by single walled carbon nanotubes and colloidal clays, ii) the molecular level integration of inherently conductive polymers with bioactive hydrogels using bi-functional monomers such as poly(pyrrole-co-3-pyrrolylbutyrate-conj-aminoethylmethacrylate) [PyBA-conj-AEMA] and 3-(1-ethyl methacryloylate)aniline to yield hetero-ladder electroconductive hydrogels, iii) the development of a multi-analyte physiological status monitoring biochip, and iv) the development of a bioanalytical Wien-bridge oscillator for the fused measurement to lactate and glucose.
View Article and Find Full Text PDFThe dual responsive Electrochemical Cell-on-a-Chip Microdisc Electrode Array (ECC MDEA 5037) is a recently developed electrochemical transducer for use in a wireless, implantable biosensor system for the continuous measurement of interstitial glucose and lactate. Fabrication of the biorecognition membrane via pyrrole electropolymerization and both and characterization of the resulting biotransducer is described. The influence of EDC-NHS covalent conjugation of glucose oxidase with 4-(3-pyrrolyl) butyric acid (monomerization) and with 4-sulfobenzoic acid (sulfonization) on biosensor performance was examined.
View Article and Find Full Text PDFThe physicochemical properties of soft electrode materials for the abio-bio interface of advanced biosensors and next generation bionic devices in the form of electroconductive hydrogels (ECH) of interpenetrating networks of polypyrrole formed within poly(hydroxyethylmethacrylate)-based hydrogels were examined. The 1.5 mol% UV-crosslinked tetraethyleneglycol diacrylate (TEGDA) (step 1) poly(HEMA) and the electropolymerized (step 2) polypyrrole co-networks were covalently joined by the inclusion of a bifunctional monomer (1.
View Article and Find Full Text PDFContinued high morbidity and complications due to trauma related hemorrhage underscores the fact that our understanding of the detailed molecular events of trauma are inadequate to bring life-saving changes to practice. The current state of efficacy and advances in biomedical microdevice technology for trauma diagnostics concerning hemorrhage and hemorrhagic shock was considered with respect to vital signs and metabolic biomarkers. Tachycardia and hypotension are markers of hemorrhagic shock in decompensated trauma patients.
View Article and Find Full Text PDFFabrication of an enzyme amperometric biosensor for glucose via electropolymerization of pyrrole in the presence of glucose oxidase onto a hydrogel coated platinum electrode is hereby established as a viable biotransducer fabrication method. Platinum micro- (φ=25 μm) and macro- (φ=100 μm) electrodes were electrochemically activated and chemically modified with 3-aminopropyl-trimethoxysilane (APTMS), functionalized with acryloyl(polyethyleneglycol)-N-hydroxysuccinamide (ACRL-PEG-NHS), dipped into a polyHEMA based hydrogel cocktail and UV cross-linked. Electropolymerization of Py in the presence of GOx produced glucose responsive biotransducers that showed; (i) a 4-fold reduction in sensitivity compared with directly electropolymerized PPy films, (ii) an electropolymerization charge density dependence of biotransducer sensitivity and enzyme activity that was maximal at 1.
View Article and Find Full Text PDFThe implantable enzyme amperometric biosensor continues as the dominant in vivo format for the detection, monitoring and reporting of biochemical analytes related to a wide range of pathologies. Widely used in animal studies, there is increasing emphasis on their use in diabetes care and management, the management of trauma-associated hemorrhage and in critical care monitoring by intensivists in the ICU. These frontier opportunities demand continuous indwelling performance for up to several years, well in excess of the currently approved seven days.
View Article and Find Full Text PDFControl of the in vitro spatiotemporal availability of calcium ions is one means by which the microenvironments of hematopoietic stem cells grown in culture may be reproduced. The effects of cross-linking density on the diffusivity of calcium ions through cell culture compatible poly(2-hydroxyethyl methacrylate) [poly(HEMA)]-based bioactive hydrogels possessing 1.0 mol% 2-methacryloyloxyethyl phosphorylcholine (MPC), 5 mol% N,N-(dimethylamino)ethylmethacrylate (DMAEMA) and ca.
View Article and Find Full Text PDFElectrode-supported hydrogels were conferred with the biospecificity of enzymes during the process of electropolymerization to give rise to a class of bioactive, stimuli-responsive co-joined interpenetrating networks of inherently conductive polymers and highly hydrated hydrogels. Glucose responsive biotransducers were prepared by potentiostatic electropolymerization [750 mV vs. Ag/AgCl (3 M KCl)] of pyrrole at Poly(hydoxyethyl methacrylate)-based hydrogel-coated Pt micro-electrodes (Φ = 100 μm) from aqueous solutions of pyrrole and glucose oxidase (GOx; 0.
View Article and Find Full Text PDF