More than half of the world's rivers dry up periodically, but our understanding of the biological communities in dry riverbeds remains limited. Specifically, the roles of dispersal, environmental filtering and biotic interactions in driving biodiversity in dry rivers are poorly understood. Here, we conduct a large-scale coordinated survey of patterns and drivers of biodiversity in dry riverbeds.
View Article and Find Full Text PDFArthropods play a vital role in ecosystems; yet, their distributions remain poorly understood, particularly in mountainous regions. This study delves into the modelling of the distribution of 31 foliar arthropod genera in the French Alps, using a comprehensive approach encompassing multi-trophic sampling, community DNA metabarcoding and random forest models. The results underscore the significant importance of vegetation structure, such as herbaceous vegetation density, and forest density and heterogeneity, along with climate, in shaping the distributions of most arthropods.
View Article and Find Full Text PDFContinued advancements in environmental DNA (eDNA) research have made it possible to access intraspecific variation from eDNA samples, opening new opportunities to expand non-invasive genetic studies of wildlife populations. However, the use of eDNA samples for individual genotyping, as typically performed in non-invasive genetics, still remains elusive. We present successful individual genotyping of eDNA obtained from snow tracks of three large carnivores: brown bear (Ursus arctos), European lynx (Lynx lynx) and wolf (Canis lupus).
View Article and Find Full Text PDFStomach content analyses are a valuable tool in human forensic science to interpret perimortem events. While the identification of food components of plant and animal origin has traditionally been conducted by macro- and microscopical approaches in case of incomplete digestion, molecular methods provide the potential to increase sensitivity and taxonomic resolution. In particular, DNA metabarcoding (PCR-amplification and next generation sequencing of complex DNA mixtures) has seen a rapid growth in the field of wildlife ecology to assess species' diets from faecal and gastric samples.
View Article and Find Full Text PDFThe ecological requirements of brown bears are poorly known in the Himalaya region, which complicates conservation efforts. We documented the diet of the Himalayan brown bear (Ursus arctos isabellinus) by combining classical scat analysis and a newly developed molecular genetic technique (the trnL approach), in Deosai National Park, Pakistan. Brown bears consumed over 50 plant species, invertebrates, ungulates, and several rodents.
View Article and Find Full Text PDFWe performed a pooled whole-genome sequencing on samples of the alpine plant Arabis alpina, harvested in ten populations along an elevation gradient in the French Alps. A large dataset of genetic variations was produced as single nucleotide polymorphisms (SNPs). A combined genome scan approach enabled detecting genomic regions associated with a synthetic environmental variable characterizing the climate at each sampling location.
View Article and Find Full Text PDFGenetic bottlenecks resulting from human-induced population declines make alarming symbols for the irreversible loss of our natural legacy worldwide. The grey wolf () is an iconic example of extreme declines driven by anthropogenic factors. Here, we assessed the genetic signatures of 150 years of wolf persecution throughout the Western Palaearctic by high-throughput mitochondrial DNA sequencing of historical specimens in an unprecedented spatio-temporal framework.
View Article and Find Full Text PDFThe "niche variation hypothesis" (NVH) predicts that populations with wider niches should display higher among-individual variability. This prediction originally stated at the intra-specific level may be extended to the inter-specific level: individuals of generalist species may differ to a greater extent than individuals of a specialist species. We tested the NVH at intra- and inter-specific levels based on a large diet database of three large herbivore feces collected in the field and analyzed using DNA metabarcoding.
View Article and Find Full Text PDFFood preferences and food availability are two major determinants of the diet of generalist herbivores and of their spatial distribution. How do these factors interact and eventually lead to diet differentiation in co-occurring herbivores? We quantified the diet of four grasshopper species co-occurring in subalpine grasslands using DNA barcoding of the plants contained in the faeces of individuals sampled in the field. The food preferences of each grasshopper species were assessed by a choice (cafeteria) experiment from among 24 plant species common in five grassland plots, in which the four grasshoppers were collected, while the habitat was described by the relative abundance of plant species in the grassland plots.
View Article and Find Full Text PDFIn tropical regions, most primary ecosystems have been replaced by mosaic landscapes in which species must cope with a large shift in the distribution of their habitat and associated food resources. Primates are particularly vulnerable to habitat modifications. Most species persist in small fragments surrounded by complex human-mediated matrices whose structure and connectivity may strongly influence their dispersal and feeding behavior.
View Article and Find Full Text PDFMate choice for major histocompatibility complex (MHC) compatibility has been found in several taxa, although rarely in birds. MHC is a crucial component in adaptive immunity and by choosing an MHC-dissimilar partner, heterozygosity and potentially broad pathogen resistance is maximized in the offspring. The MHC genotype influences odour cues and preferences in mammals and fish and hence olfactory-based mate choice can occur.
View Article and Find Full Text PDFDNA metabarcoding refers to the DNA-based identification of multiple species from a single complex and degraded environmental sample. We developed new sampling and extraction protocols suitable for DNA metabarcoding analyses targeting soil extracellular DNA. The proposed sampling protocol has been designed to reduce, as much as possible, the influence of local heterogeneity by processing a large amount of soil resulting from the mixing of many different cores.
View Article and Find Full Text PDFDiet analysis is a prerequisite to fully understand the biology of a species and the functioning of ecosystems. For carnivores, traditional diet analyses mostly rely upon the morphological identification of undigested remains in the faeces. Here, we developed a methodology for carnivore diet analyses based on the next-generation sequencing.
View Article and Find Full Text PDFEarthworms are known for their important role within the functioning of an ecosystem, and their diversity can be used as an indicator of ecosystem health. To date, earthworm diversity has been investigated through conventional extraction methods such as handsorting, soil washing or the application of a mustard solution. Such techniques are time consuming and often difficult to apply.
View Article and Find Full Text PDFAssessing conservation strategies requires reliable estimates of abundance. Because detecting all individuals is most often impossible in free-ranging populations, estimation procedures have to account for a <1 detection probability. Capture-recapture methods allow biologists to cope with this issue of detectability.
View Article and Find Full Text PDFBackground: In order to understand the role of herbivores in trophic webs, it is essential to know what they feed on. Diet analysis is, however, a challenge in many small herbivores with a secretive life style. In this paper, we compare novel (high-throughput pyrosequencing) DNA barcoding technology for plant mixture with traditional microhistological method.
View Article and Find Full Text PDFBecause of the demand for controlling livestock diets, two methods that characterize the DNA of plants present in feces were developed. After DNA extraction from fecal samples, a short fragment of the chloroplastic trnL intron was amplified by PCR using a universal primer pair for plants. The first method generates a signature that is the electrophoretic migration pattern of the PCR product.
View Article and Find Full Text PDFThe development of DNA barcoding (species identification using a standardized DNA sequence), and the availability of recent DNA sequencing techniques offer new possibilities in diet analysis. DNA fragments shorter than 100-150 bp remain in a much higher proportion in degraded DNA samples and can be recovered from faeces. As a consequence, by using universal primers that amplify a very short but informative DNA fragment, it is possible to reliably identify the plant taxon that has been eaten.
View Article and Find Full Text PDFBacterial intracellular symbiosis (endosymbiosis) is well documented in the insect world where it is believed to play a crucial role in adaptation and evolution. However, although Coleopteran insects are of huge ecological and economical interest, endosymbiont molecular analysis is limited to the Dryophthoridae family. Here, we have analyzed the intracellular symbiotic bacteria in 2 Hylobius species belonging to the Molytinae subfamily (Curculionoidea superfamily) that exhibit different features from the Dryophthoridae insects in terms of their ecology and geographical spanning.
View Article and Find Full Text PDFWolves in Italy strongly declined in the past and were confined south of the Alps since the turn of the last century, reduced in the 1970s to approximately 100 individuals surviving in two fragmented subpopulations in the central-southern Apennines. The Italian wolves are presently expanding in the Apennines, and started to recolonize the western Alps in Italy, France and Switzerland about 16 years ago. In this study, we used a population genetic approach to elucidate some aspects of the wolf recolonization process.
View Article and Find Full Text PDFDNA barcoding should provide rapid, accurate and automatable species identifications by using a standardized DNA region as a tag. Based on sequences available in GenBank and sequences produced for this study, we evaluated the resolution power of the whole chloroplast trnL (UAA) intron (254-767 bp) and of a shorter fragment of this intron (the P6 loop, 10-143 bp) amplified with highly conserved primers. The main limitation of the whole trnL intron for DNA barcoding remains its relatively low resolution (67.
View Article and Find Full Text PDFGoats were among the first farm animals domesticated, approximately 10,500 years ago, contributing to the rise of the "Neolithic revolution." Previous genetic studies have revealed that contemporary domestic goats (Capra hircus) show far weaker intercontinental population structuring than other livestock species, suggesting that goats have been transported more extensively. However, the timing of these extensive movements in goats remains unknown.
View Article and Find Full Text PDF