Publications by authors named "Christian Milet"

A successful strategy for the identification of shell proteins is based on proteomic analyses where soluble and insoluble fractions isolated from organic shell matrix are digested with trypsin with the aim of generating peptides, which are used to identify novel shell proteins contained in databases. However, using trypsin as a sole degradative agent is limited by the enzyme's cleavage specificity and is dependent upon the occurrence of lysine and arginine in the shell protein sequence. To bypass this limitation, we investigated the ability of trifluoroacetic acid (TFA), a low-specificity chemical degradative agent, to generate clusters of analyzable peptides from organic shell matrix, suitable for database annotation.

View Article and Find Full Text PDF

Shell matrix proteins from Pinctada margaritifera were characterized by combining proteomics analysis of shell organic extracts and transcript sequences, both obtained from the shell-forming cell by using the suppression subtractive hybridization method (SSH) and from an expressed sequence tag (EST) database available from Pinctada maxima mantle tissue. Some of the identified proteins were homologues to proteins reported in other mollusk shells, namely lysine-rich matrix proteins (KRMPs), shematrins and molluscan prismatic and nacreous layer 88 kDa (MPN88). Sequence comparison within and among Pinctada species pointed to intra- and interspecies variations relevant to polymorphism and to evolutionary distance, respectively.

View Article and Find Full Text PDF

Background: The formation of the molluscan shell is regulated to a large extent by a matrix of extracellular macromolecules that are secreted by the shell forming tissue, the mantle. This so called "calcifying matrix" is a complex mixture of proteins and glycoproteins that is assembled and occluded within the mineral phase during the calcification process. While the importance of the calcifying matrix to shell formation has long been appreciated, most of its protein components remain uncharacterised.

View Article and Find Full Text PDF

An integrated study of shell formation was initiated covering the entire life cycle of the marine gastropod Haliotis tuberculata. Shell microstructure, chemistry and mineralogy were investigated by polarized microscopy, scanning electron microscopy (SEM), energy dispersive X-ray spectrometry (EDX) and infra-red (IR) spectroscopy. SEM images of trochophore and veliger larvae showed the different stages of shell growth from the initial shell field to the late calcified protoconch.

View Article and Find Full Text PDF

In mollusks, one of the most widely studied shell textures is nacre, the lustrous aragonitic layer that constitutes the internal components of the shells of several bivalves, a few gastropods,and one cephalopod: the nautilus. Nacre contains a minor organic fraction, which displays a wide range of functions in relation to the biomineralization process. Here, we have biochemically characterized the nacre matrix of the cephalopod Nautilus macromphalus.

View Article and Find Full Text PDF

The formation of the molluscan shell is finely tuned by macromolecules of the shell organic matrix. Previous results have shown that the acid-soluble fraction of the nacre matrix of the freshwater paleoheterodont bivalve Unio pictorum shell displays a number of remarkable properties, such as calcium-binding activity, the presence of extensive glycosylations and the capacity to interfere at low concentration with in vitro calcium carbonate precipitation. Here we have found that the nacre-soluble matrix exhibits a carbonic anhydrase activity, an important function in calcification processes.

View Article and Find Full Text PDF

The nacre layer from the pearl oyster shell is considered as a promising osteoinductive biomaterial. Nacre contains one or more signal molecules capable of stimulating bone formation. The identity and the mode of action of these molecules on the osteoblast differentiation were analyzed.

View Article and Find Full Text PDF

This study evaluates the effect of the mother-of-pearl (nacre) organic matrix on mammalian osteoclast activity and on cathepsin K protease. Rabbit osteoclasts were cultured on bovine cortical bone slices in the presence of water-soluble molecules extracted from nacre of the pearl oyster Pinctada margaritifera. Osteoclast resorption activity was determined by quantification of the resorption surface area on bovine bone slices.

View Article and Find Full Text PDF

Shell nacre is laid upon an organic cell-free matrix, part of which, paradoxically, is water soluble and displays biological activities. Proteins in the native shell also constitute an insoluble network and offer a model for studying supramolecular organization as a means of self-ordering. Consequently, difficulties are encountered in extraction and purification strategies for protein characterization.

View Article and Find Full Text PDF

We extracted proteinase inhibitors from the nacre of the oyster Pinctada margaritifera with water. Mixing the nacre powder with water for 20 h led to a water-soluble fraction [0.24% (wt/wt) of nacre].

View Article and Find Full Text PDF

Organic matrix from molluscan shells has the potential to regulate calcium carbonate deposition and crystallization. Control of crystal growth thus seems to depend on control of matrix protein secretion or activation processes in the mantle cells, about which little is known. Biomineralization is a highly orchestrated biological process.

View Article and Find Full Text PDF

Nacre or mother of pearl is a calcified structure that forms the lustrous inner layer of some shells. We studied the biological activity of the water-soluble matrix (WSM) extracted from powdered nacre from the shell of the pearl oyster, Pinctada maxima, on the MC3T3-E1 pre-osteoblast cell line from mouse calvaria. This cell line has the ability to differentiate into osteoblasts and to mineralize in the presence of beta-glycerophosphate and ascorbic acid.

View Article and Find Full Text PDF

Nacre organic matrix has been conventionally classified as both 'water-soluble' and 'water-insoluble', based on its solubility in aqueous solutions after decalcification with acid or EDTA. Some characteristics (aspartic acid-rich, silk-fibroin-like content) were specifically attributed to either one or the other. The comparative study on the technique of extraction (extraction with water alone vs.

View Article and Find Full Text PDF

In vivo and in vitro studies provide strong evidence of the osteogenic activity of nacre obtained from Pinctada maxima. The in vitro studies indicate that diffusible factors from nacre are involved in cell stimulation. The water-soluble matrix (WSM) was extracted from nacre by a non-decalcifying process, and four fractions (SE(1)-SE(4)) were separated by SE-HPLC.

View Article and Find Full Text PDF