Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterized by progressive limb and/or bulbar muscular weakness and atrophy. Although ALS-related alterations of motor and extra-motor neuronal networks have repeatedly been reported, their temporal dynamics during disease progression are not well understood. Recently, we reported a decline of motor system activity and a concurrent increase of hippocampal novelty-evoked modulations across 3 months of ALS progression.
View Article and Find Full Text PDFPrevious studies have shown that in amyotrophic lateral sclerosis (ALS) multiple motor and extra-motor regions display structural and functional alterations. However, their temporal dynamics during disease-progression are unknown. To address this question we employed a longitudinal design assessing motor- and novelty-related brain activity in two fMRI sessions separated by a 3-month interval.
View Article and Find Full Text PDFAttentional selection on the basis of nonspatial stimulus features induces a sensory gain enhancement by increasing the firing-rate of individual neurons tuned to the attended feature, while responses of neurons tuned to opposite feature-values are suppressed. Here we recorded event-related potentials (ERPs) and magnetic fields (ERMFs) in human observers to investigate the underlying neural correlates of feature-based attention at the population level. During the task subjects attended to a moving transparent surface presented in the left visual field, while task-irrelevant probe stimuli executing brief movements into varying directions were presented in the opposite visual field.
View Article and Find Full Text PDFEfficient interaction with the sensory environment requires the rapid reallocation of attentional resources between spatial locations, perceptual features, and objects. It is still a matter of debate whether one single domain-general network or multiple independent domain-specific networks mediate control during shifts of attention across features, locations, and objects. Here, we employed functional magnetic resonance imaging to directly compare the neural mechanisms controlling attention during voluntary and stimulus-driven shifts across objects and locations.
View Article and Find Full Text PDFPurpose: Recent evidence from neuroimaging studies using visual tasks suggests that the right superior parietal cortex plays a pivotal role for the recovery of neglect. Importantly, neglect-related deficits are not limited to the visual system and have a rather multimodal nature. We employed somatosensory stimulation in patients with neglect in order to analyze activity changes in networks that are presumably associated with this condition.
View Article and Find Full Text PDFAttending to the spatial location or to nonspatial features of a stimulus modulates neural activity in cortical areas that process its perceptual attributes. The feature-based attentional selection of the direction of a moving stimulus is associated with increased firing of individual neurons tuned to the direction of the movement in area V5/MT, while responses of neurons tuned to opposite directions are suppressed. However, it is not known how these multiplicatively scaled responses of individual neurons tuned to different motion-directions are integrated at the population level, in order to facilitate the processing of stimuli that match the perceptual goals.
View Article and Find Full Text PDFCentral to the organization of behavior is the ability to represent the magnitude of a prospective reward and the costs related to obtaining it. Therein, reward-related neural activations are discounted in dependence of the effort required to resolve a given task. Varying attentional demands of the task might however affect reward-related neural activations.
View Article and Find Full Text PDFThe detection of novel events and their identification is a basic prerequisite in a rapidly changing environment. Recently, the processing of novelty has been shown to rely on the hippocampus and to be associated with activity in reward-related areas. The present study investigated the influence of spatial attention on neural processing of novel relative to frequently presented standard and target stimuli.
View Article and Find Full Text PDFAttentional selection can be based on spatial locations, non-spatial stimulus features, or entire objects as integrated feature ensembles. Several studies reported attentional modulations in those regions that process the constituent features of the presented stimuli. Here we employed functional magnetic resonance imaging (fMRI) to directly compare the magnitude of space- and/or feature-based attentional modulations while subjects directed their attention to a particular color (red or green) of a transparent surface and at the same time to a spatial location (left or right visual field).
View Article and Find Full Text PDF