Organic electrochemical transistors (OECTs) underpin a range of emerging technologies, from bioelectronics to neuromorphic computing, owing to their unique coupling of electronic and ionic charge carriers. In this context, various OECT systems exhibit significant hysteresis in their transfer curve, which is frequently leveraged to achieve non-volatility. Meanwhile, a general understanding of its physical origin is missing.
View Article and Find Full Text PDFEarly detection of malign patterns in patients' biological signals can save millions of lives. Despite the steady improvement of artificial intelligence-based techniques, the practical clinical application of these methods is mostly constrained to an offline evaluation of the patients' data. Previous studies have identified organic electrochemical devices as ideal candidates for biosignal monitoring.
View Article and Find Full Text PDFThe composition of Van-der-Waals heterostructures is conclusively determined using a hybrid evaluation scheme of data acquired by optical microspectroscopy. This scheme deploys a parameter set comprising both change in reflectance and wavelength shift of distinct extreme values in reflectance spectra. Furthermore, the method is supported by an accurate analytical model describing reflectance of multilayer systems acquired by optical microspectroscopy.
View Article and Find Full Text PDF