As kidney diseases affect ∼10% of the world population, understanding the underlying mechanisms and developing therapeutic interventions are of high importance. Although animal models have enhanced knowledge of disease mechanisms, human (patho-)physiology may not be adequately represented in animals. Developments in microfluidics and renal cell biology have enabled the development of dynamic models to study renal (patho-)physiology in vitro.
View Article and Find Full Text PDFDevelopmental neurotoxicity (DNT) is a potential hazard of chemicals. Recently, an in vitro testing battery (DNT IVB) was established to complement existing rodent in vivo approaches. Deltamethrin (DLT), a pyrethroid with a well-characterized neurotoxic mode of action, has been selected as a reference chemical to evaluate the performance of the DNT IVB.
View Article and Find Full Text PDFNon-clinical models to study metabolism including animal models and cell assays are often limited in terms of species translatability and predictability of human biology. This field urgently requires a push towards more physiologically accurate recapitulations of drug interactions and disease progression in the body. Organ-on-chip systems, specifically multi-organ chips (MOCs), are an emerging technology that is well suited to providing a species-specific platform to study the various types of metabolism (glucose, lipid, protein and drug) by recreating organ-level function.
View Article and Find Full Text PDFThere are several antibody therapeutics in preclinical and clinical development, industry-wide, for the treatment of central nervous system (CNS) disorders. Due to the limited permeability of antibodies across brain barriers, the quantitative understanding of antibody exposure in the CNS is important for the design of antibody drug characteristics and determining appropriate dosing regimens. We have developed a minimal physiologically-based pharmacokinetic (mPBPK) model of the brain for antibody therapeutics, which was reduced from an existing multi-species platform brain PBPK model.
View Article and Find Full Text PDFAlthough the association between the microbiome and IBD and liver diseases is known, the cause and effect remain elusive. By connecting human microphysiological systems of the gut, liver, and circulating Treg and Th17 cells, we created a multi-organ model of ulcerative colitis (UC) ex vivo. The approach shows microbiome-derived short-chain fatty acids (SCFAs) to either improve or worsen UC severity, depending on the involvement of effector CD4 T cells.
View Article and Find Full Text PDFCPT Pharmacometrics Syst Pharmacol
May 2019
Drug-induced kidney injury, a major cause of acute kidney injury, results in progressive kidney disease and is linked to increased mortality in hospitalized patients. Primary injury sites of drug-induced kidney injury are proximal tubules. Clinically, kidney injury molecule-1, an established tubule-specific biomarker, is monitored to assess the presence and progression of injury.
View Article and Find Full Text PDFMicrophysiological systems (MPS), consisting of tissue constructs, biomaterials, and culture media, aim to recapitulate relevant organ functions in vitro. MPS components are housed in fluidic hardware with operational protocols, such as periodic complete media replacement. Such batch-like operations provide relevant nutrients and remove waste products but also reset cell-secreted mediators (e.
View Article and Find Full Text PDFLithium amides are versatile C-H metallation reagents with vast industrial demand because of their high basicity combined with their weak nucleophilicity, and they are applied in kilotons worldwide annually. The nuclearity of lithium amides, however, modifies and steers reactivity, region- and stereo-selectivity and product diversification in organic syntheses. In this regard, it is vital to understand Li-N bonding as it causes the aggregation of lithium amides to form cubes or ladders from the polar Li-N covalent metal amide bond along the ring stacking and laddering principle.
View Article and Find Full Text PDFMicrophysiological systems (MPSs) are in vitro models that capture facets of in vivo organ function through use of specialized culture microenvironments, including 3D matrices and microperfusion. Here, we report an approach to co-culture multiple different MPSs linked together physiologically on re-useable, open-system microfluidic platforms that are compatible with the quantitative study of a range of compounds, including lipophilic drugs. We describe three different platform designs - "4-way", "7-way", and "10-way" - each accommodating a mixing chamber and up to 4, 7, or 10 MPSs.
View Article and Find Full Text PDFMicrophysiological systems (MPS) provide relevant physiological environments in vitro for studies of pharmacokinetics, pharmacodynamics and biological mechanisms for translational research. Designing multi-MPS platforms is essential to study multi-organ systems. Typical design approaches, including direct and allometric scaling, scale each MPS individually and are based on relative sizes not function.
View Article and Find Full Text PDFPurpose: Peptide receptor radionuclide therapy (PRRT) is commonly performed in the treatment of neuroendocrine tumors (NET), where somatostatin analogs (DOTATATE) are radiolabeled with (90)Y, (68)Ga or (111)In for pre-therapeutic and therapeutic purposes. Quantitative evaluation of the biokinetic data can be performed by using physiologically based pharmacokinetic (PBPK) models. Knowledge about the biodistribution in a pre-clinical setting would allow optimizing the translation from bench to bedside.
View Article and Find Full Text PDFBackground: Peptide receptor radionuclide therapy (PRRT) plays an important role in the treatment of neuroendocrine tumors (NET). Pre-therapeutic dosimetry using the area under the measured time-activity curve (AUC) is important. The sampling schedule for this dosimetry determines the accuracy and reliability of the obtained AUC.
View Article and Find Full Text PDFUnlabelled: In peptide receptor radionuclide therapy with (90)Y-labeled DOTATATE, the kidney absorbed dose limits the maximum amount of total activity that can be safely administered in many patients. A higher tumor-to-kidney absorbed dose ratio might be achieved by optimizing the amount of injected peptide and activity, as recent studies have shown different degrees of receptor saturation for normal tissue and tumor. The aim of this work was to develop and implement a modeling method for treatment planning to determine the optimal combination of peptide amount and pertaining therapeutic activity for each patient.
View Article and Find Full Text PDFBackground: Accurate treatment planning is recommended in peptide-receptor radionuclide therapy (PRRT) to minimize the toxicity to organs at risk while maximizing tumor cell sterilization. The aim of this study was to quantify the effect of different degrees of individualization on the prediction accuracy of individual therapeutic biodistributions in patients with neuroendocrine tumors (NETs).
Methods: A recently developed physiologically based pharmacokinetic (PBPK) model was fitted to the biokinetic data of 15 patients with NETs after pre-therapeutic injection of (111)In-DTPAOC.
For treatment planning in radioimmunotherapy (RIT), the accurate estimation of time-integrated activity coefficients (TIACs) is essential. To estimate the TIACs in RIT using (90)Y-labeled anti-CD66 antibodies, physiologically based pharmacokinetic (PBPK) models are advantageous. Further optimization in predicting therapeutic TIACs may be achieved by including population-specific parameters.
View Article and Find Full Text PDFIntroduction: Radioimmunotherapy (RIT) with 90Y-labeled anti-CD66 antibody is used to selectively irradiate the red marrow (RM) before blood stem cell transplantation of acute leukemia patients. To calculate the activity to administer, time-integrated activity coefficients are required. These are estimated prior to therapy using gamma camera and serum measurements after injection of 111In labeled anti-CD66 antibody.
View Article and Find Full Text PDFFormal anti-carbopalladation reactions of CC triple bonds are uncommon, but highly useful transformations. Alkynes can be designed to give anti-carbopalladation products. Prerequisite is the exclusion of other reaction pathways to provoke the cis-trans isomerization of the syn-carbopalladation intermediate.
View Article and Find Full Text PDFPincer complexes of 2,5-bis{(pyrrolidino)-methyl}-pyrrole with group 14 elements such as germanium, tin, and lead were prepared and fully characterized by X-ray single-crystal analysis, NMR spectroscopy, and mass spectrometry. The structures of the complexes were analyzed and compared to the free and the lithiated ligand to gain insight into the effects of metal coordination on the aromatic system. A further aspect was to elaborate the capability of group 14 metals to interact with the pyrrole π-system.
View Article and Find Full Text PDF