Publications by authors named "Christian M Wolff"

Metal halide perovskites have shown exceptional potential in converting solar energy to electric power in photovoltaics, yet their application is hampered by limited operational stability. This stimulated the development of hybrid layered (two-dimensional, 2D) halide perovskites based on hydrophobic organic spacers, templating perovskite slabs, as a more stable alternative. However, conventional organic spacer cations are electronically insulating, resulting in charge confinement within the inorganic slabs, thus limiting their functionality.

View Article and Find Full Text PDF

Halide-perovskite semiconductors have a high potential for use in single-junction and tandem solar cells. Despite their unprecedented rise in power conversion efficiencies (PCEs) for photovoltaic (PV) applications, it remains unclear whether perovskite solar modules can reach a sufficient operational lifetime. In order to make perovskite solar cells (PSCs) commercially viable, a fundamental understanding of the relationship between their nanostructure, optoelectronic properties, device efficiency, and long-term operational stability/reliability needs to be established.

View Article and Find Full Text PDF

Whether illumination influences the ion conductivity in lead-halide perovskite solar cells containing iodide halides has been an ongoing debate. Experiments to elucidate the presence of a photoconductive effect require special devices or measurement techniques and neglect possible influences of the enhanced electronic charge concentrations. Here, we assess the electronic-ionic charge transport using drift-diffusion simulations and show that the well-known increase in capacitance at low frequencies under illumination is caused by electronic currents that are amplified due to the screening of the alternating electric field by the ions.

View Article and Find Full Text PDF
Article Synopsis
  • * Combining two phosphonic acid compounds, Me-4PACz and another PA with different functional groups, enhances film formation, improves charge transport, and reduces energy losses at the interface.
  • * Achieving a high current density of 40.2 mA/cm and greater than 30% power conversion efficiency, this research showcases the potential for creating highly efficient and industry-compatible tandem solar cells.
View Article and Find Full Text PDF
Article Synopsis
  • Pb-Sn solar cells use a special layer called PEDOT:PSS to help move electricity, but it has some problems that make it less efficient.
  • A new molecule called 2-fluoro benzylammonium iodide (FBI) helps fix these problems and makes the solar cells work better.
  • With this new molecule, scientists were able to create solar cells that have a higher efficiency of 20.5% and can produce more energy.
View Article and Find Full Text PDF

Up-scalable coating processes need to be developed to manufacture efficient and stable perovskite-based solar modules. In this work, we combine two Lewis base additives (N,N'-dimethylpropyleneurea and thiourea) to fabricate high-quality CsFAPbI perovskite films by blade-coating on large areas. Selected-area electron diffraction patterns reveal a minimization of stacking faults in the α-FAPbI phase for this specific cesium-formamidinium composition in both spin-coated and blade-coated perovskite films, demonstrating its scaling potential.

View Article and Find Full Text PDF

The technique of alloying FA with Cs is often used to promote structural stabilization of the desirable α-FAPbI phase in halide perovskite devices. However, the precise mechanisms by which these alloying approaches improve the optoelectronic quality and enhance the stability have remained elusive. In this study, we advance that understanding by investigating the effect of cationic alloying in CsFAPbI perovskite thin-films and solar-cell devices.

View Article and Find Full Text PDF
Article Synopsis
  • Automated high-throughput workflows are gaining importance for optimizing material stability, but many limitations exist, such as the use of unsuitable synthesis techniques and ambient conditions that hinder result transferability.
  • This study focuses on MAPbI thin films to demonstrate a new combinatorial inert-gas workflow for assessing materials' intrinsic degradation under controlled environments, simulating encapsulated device conditions.
  • Utilizing advanced automated characterization techniques and a custom UV-Vis aging setup, the research reveals insights into degradation kinetics and phase changes, supported by a machine learning model that connects optical spectra variations to aging processes, enabling better comparison of material stability across multiple samples.
View Article and Find Full Text PDF

The primary performance limitation in inverted perovskite-based solar cells is the interface between the fullerene-based electron transport layers and the perovskite. Atomic layer deposited thin aluminum oxide (AlO) interlayers that reduce nonradiative recombination at the perovskite/C interface are developed, resulting in >60 millivolts improvement in open-circuit voltage and 1% absolute improvement in power conversion efficiency. Surface-sensitive characterizations indicate the presence of a thin, conformally deposited AlO layer, functioning as a passivating contact.

View Article and Find Full Text PDF

Silicon solar cells are approaching their theoretical efficiency limit of 29%. This limitation can be exceeded with advanced device architectures, where two or more solar cells are stacked to improve the harvesting of solar energy. In this work, we devise a tandem device with a perovskite layer conformally coated on a silicon bottom cell featuring micrometric pyramids-the industry standard-to improve its photocurrent.

View Article and Find Full Text PDF

The development of stable materials, processable on a large area, is a prerequisite for perovskite industrialization. Beyond the perovskite absorber itself, this should also guide the development of all other layers in the solar cell. In this regard, the use of NiO as a hole transport material (HTM) offers several advantages, as it can be deposited with high throughput on large areas and on flat or textured surfaces via sputtering, a well-established industrial method.

View Article and Find Full Text PDF

Tin fluoride (SnF) is an indispensable additive for high-efficiency Pb-Sn perovskite solar cells (PSCs). However, the spatial distribution of SnF in the perovskite absorber is seldom investigated while essential for a comprehensive understanding of the exact role of the SnF additive. Herein, we revealed the spatial distribution of the SnF additive and made structure-optoelectronic properties-flexible photovoltaic performance correlation.

View Article and Find Full Text PDF

In crystalline and amorphous semiconductors, the temperature-dependent Urbach energy can be determined from the inverse slope of the logarithm of the absorption spectrum and reflects the static and dynamic energetic disorder. Using recent advances in the sensitivity of photocurrent spectroscopy methods, we elucidate the temperature-dependent Urbach energy in lead halide perovskites containing different numbers of cation components. We find Urbach energies at room temperature to be 13.

View Article and Find Full Text PDF

The remarkable progress of metal halide perovskites in photovoltaics has led to the power conversion efficiency approaching 26%. However, practical applications of perovskite-based solar cells are challenged by the stability issues, of which the most critical one is photo-induced degradation. Bare CHNHPbI perovskite films are known to decompose rapidly, with methylammonium and iodine as volatile species and residual solid PbI and metallic Pb, under vacuum under white light illumination, on the timescale of minutes.

View Article and Find Full Text PDF

Perovskite photovoltaic (PV) cells have demonstrated power conversion efficiencies (PCE) that are close to those of monocrystalline silicon cells; however, in contrast to silicon PV, perovskites are not limited by Auger recombination under 1-sun illumination. Nevertheless, compared to GaAs and monocrystalline silicon PV, perovskite cells have significantly lower fill factors due to a combination of resistive and non-radiative recombination losses. This necessitates a deeper understanding of the underlying loss mechanisms and in particular the ideality factor of the cell.

View Article and Find Full Text PDF

Organic solar cells are currently experiencing a second golden age thanks to the development of novel non-fullerene acceptors (NFAs). Surprisingly, some of these blends exhibit high efficiencies despite a low energy offset at the heterojunction. Herein, free charge generation in the high-performance blend of the donor polymer PM6 with the NFA Y6 is thoroughly investigated as a function of internal field, temperature and excitation energy.

View Article and Find Full Text PDF

Perovskite solar cells are among the most exciting photovoltaic systems as they combine low recombination losses, ease of fabrication, and high spectral tunability. The Achilles heel of this technology is the device stability due to the ionic nature of the perovskite crystal, rendering it highly hygroscopic, and the extensive diffusion of ions especially at increased temperatures. Herein, we demonstrate the application of a simple solution-processed perfluorinated self-assembled monolayer (p-SAM) that not only enhances the solar cell efficiency, but also improves the stability of the perovskite absorber and, in turn, the solar cell under increased temperature or humid conditions.

View Article and Find Full Text PDF

Perovskite solar cells combine high carrier mobilities with long carrier lifetimes and high radiative efficiencies. Despite this, full devices suffer from significant nonradiative recombination losses, limiting their V to values well below the Shockley-Queisser limit. Here, recent advances in understanding nonradiative recombination in perovskite solar cells from picoseconds to steady state are presented, with an emphasis on the interfaces between the perovskite absorber and the charge transport layers.

View Article and Find Full Text PDF

2D Ruddlesden-Popper perovskite (RPP) solar cells have excellent environmental stability. However, the power conversion efficiency (PCE) of RPP cells remains inferior to 3D perovskite-based cells. Herein, 2D (CH (CH ) NH ) (CH NH ) Pb I perovskite cells with different numbers of [PbI ] sheets (n = 2-4) are analyzed.

View Article and Find Full Text PDF

Charge extraction in organic solar cells (OSCs) is commonly believed to be limited by bimolecular recombination of photogenerated charges. However, the fill factor of OSCs is usually almost entirely governed by recombination processes that scale with the first order of the light intensity. This linear loss was often interpreted to be a consequence of geminate or trap-assisted recombination.

View Article and Find Full Text PDF

The tremendous success of metal-halide perovskites, especially in the field of photovoltaics, has triggered a substantial number of studies in understanding their optoelectronic properties. However, consensus regarding the electronic properties of these perovskites is lacking due to a huge scatter in the reported key parameters, such as work function (Φ) and valence band maximum (VBM) values. Here, we demonstrate that the surface photovoltage (SPV) is a key phenomenon occurring at the perovskite surfaces that feature a non-negligible density of surface states, which is more the rule than an exception for most materials under study.

View Article and Find Full Text PDF

Doped spiro-OMeTAD at present is the most commonly used hole transport material (HTM) in n-i-p-type perovskite solar cells, enabling high efficiencies around 22%. However, the required dopants were shown to induce nonradiative recombination of charge carriers and foster degradation of the solar cell. Here, in a novel approach, highly conductive and inexpensive water-free poly(3,4-ethylenedioxythiophene) (PEDOT) is used to replace these dopants.

View Article and Find Full Text PDF

Photovoltaic cells based on halide perovskites, possessing remarkably high power conversion efficiencies have been reported. To push the development of such devices further, a comprehensive and reliable understanding of their electronic properties is essential but presently not available. To provide a solid foundation for understanding the electronic properties of polycrystalline thin films, we employ single-crystal band structure data from angle-resolved photoemission measurements.

View Article and Find Full Text PDF

Hybrid lead halide perovskites are introduced as charge generation layers (CGLs) for the accurate determination of electron mobilities in thin organic semiconductors. Such hybrid perovskites have become a widely studied photovoltaic material in their own right, for their high efficiencies, ease of processing from solution, strong absorption, and efficient photogeneration of charge. Time-of-flight (ToF) measurements on bilayer samples consisting of the perovskite CGL and an organic semiconductor layer of different thickness are shown to be determined by the carrier motion through the organic material, consistent with the much higher charge carrier mobility in the perovskite.

View Article and Find Full Text PDF