Publications by authors named "Christian M Sieber"

Species of the Fusarium fujikuroi species complex (FFC) cause a wide spectrum of often devastating diseases on diverse agricultural crops, including coffee, fig, mango, maize, rice, and sugarcane. Although species within the FFC are difficult to distinguish by morphology, and their genes often share 90% sequence similarity, they can differ in host plant specificity and life style. FFC species can also produce structurally diverse secondary metabolites (SMs), including the mycotoxins fumonisins, fusarins, fusaric acid, and beauvericin, and the phytohormones gibberellins, auxins, and cytokinins.

View Article and Find Full Text PDF
Article Synopsis
  • The study sequenced the genome of Phialocephala subalpina, a common root endophyte, to understand its genetic structure and functionalities.
  • The genome was found to be 69.7 Mb with 205 scaffolds, and the increase in size was due to an expanded gene inventory, not repetitive elements, containing 20,173 gene models.
  • Comparative analysis indicates that P. subalpina possesses versatile genes linked to both pathogenic and saprophytic roles, including those for breaking down complex biopolymers.
View Article and Find Full Text PDF

Due to their economic relevance, the study of plant pathogen interactions is of importance. However, elucidating these interactions and their underlying molecular mechanisms remains challenging since both host and pathogen need to be fully genetically accessible organisms. Here we present milestones in the establishment of a new biotrophic model pathosystem: and sp.

View Article and Find Full Text PDF

The rice pathogenic fungus Fusarium fujikuroi is known to produce a large variety of secondary metabolites. Besides the gibberellins, causing the bakanae effect in infected rice seedlings, the fungus produces several mycotoxins and pigments. Among the 47 putative secondary metabolite gene clusters identified in the genome of F.

View Article and Find Full Text PDF

Fusaric acid (FSA) is a mycotoxin produced by several fusaria, including the rice pathogen Fusarium fujikuroi. Genes involved in FSA biosynthesis were previously identified as a cluster containing a polyketide synthase (PKS)-encoding (FUB1) and four additional genes (FUB2-FUB5). However, the biosynthetic steps leading to FSA as well as the origin of the nitrogen atom, which is incorporated into the polyketide backbone, remained unknown.

View Article and Find Full Text PDF

Fungal secondary metabolite biosynthesis genes are of major interest due to the pharmacological properties of their products (like mycotoxins and antibiotics). The genome of the plant pathogenic fungus Fusarium graminearum codes for a large number of candidate enzymes involved in secondary metabolite biosynthesis. However, the chemical nature of most enzymatic products of proteins encoded by putative secondary metabolism biosynthetic genes is largely unknown.

View Article and Find Full Text PDF

The plant pathogenic fungus Fusarium fujikuroi is the causal agent of bakanae disease on rice due to its ability to produce gibberellins. Besides these phytohormones, F. fujikuroi is able to produce several other secondary metabolites (SMs).

View Article and Find Full Text PDF

The fungus F. fujikuroi is well known for its production of gibberellins causing the 'bakanae' disease of rice. Besides these plant hormones, it is able to produce other secondary metabolites (SMs), such as pigments and mycotoxins.

View Article and Find Full Text PDF

Lipoid proteinosis (LP) is one of the rare, recessive autosomal disorders clinically characterized by widespread deposition of hyaline-like material in the skin, mucosa and viscera. Classical features include beaded eyelid papules, laryngeal infiltration and hoarseness of voice caused by pathogenic mutations in the ECM1 gene located on 1q21.2.

View Article and Find Full Text PDF

Background: Xeroderma Pigmentosum (XP) is a rare skin disorder characterized by skin hypersensitivity to sunlight and abnormal pigmentation. The aim of this study was to investigate the genetic cause of a severe XP phenotype in a consanguineous Pakistani family and in silico characterization of any identified disease-associated mutation.

Results: The XP complementation group was assigned by genotyping of family for known XP loci.

View Article and Find Full Text PDF

In this work, the biosynthesis and regulation of the polyketide synthase/nonribosomal peptide synthetase (PKS/NRPS)-derived mutagenic mycotoxin fusarin C was studied in the fungus Fusarium fujikuroi. The fusarin gene cluster consists of nine genes (fus1-fus9) that are coexpressed under high-nitrogen and acidic pH conditions. Chromatin immunoprecipitation revealed a correlation between high expression and enrichment of activating H3K9-acetylation marks under inducing conditions.

View Article and Find Full Text PDF

The fungus Fusarium fujikuroi causes "bakanae" disease of rice due to its ability to produce gibberellins (GAs), but it is also known for producing harmful mycotoxins. However, the genetic capacity for the whole arsenal of natural compounds and their role in the fungus' interaction with rice remained unknown. Here, we present a high-quality genome sequence of F.

View Article and Find Full Text PDF