Extracellular vesicles (EVs) are nano-sized, membranous transporters of various active biomolecules with inflicting phenotypic capabilities, that are naturally secreted by almost all cells with a promising vantage point as a potential leading drug delivery platform. The intrinsic characteristics of their low toxicity, superior structural stability, and cargo loading capacity continue to fuel a multitude of research avenues dedicated to loading EVs with therapeutic and diagnostic cargos (pharmaceutical compounds, nucleic acids, proteins, and nanomaterials) in attempts to generate superior natural nanoscale delivery systems for clinical application in therapeutics. In addition to their well-known role in intercellular communication, EVs harbor microRNAs (miRNAs), which can alter the translational potential of receiving cells and thus act as important mediators in numerous biological and pathological processes.
View Article and Find Full Text PDFNuclear factor-erythroid 2-related factor-2 (Nrf2) is a transcription factor that serves as a master regulator of anti-inflammatory agents, phase I xenobiotic, and phase II antioxidant enzymes, all of which provide a cytoprotective role during disease progression. We hypothesized that oral administration of a purported phytochemical Nrf2-activator, PB125, would increase long bone strength in aging Hartley guinea pigs, a model prone to musculoskeletal decline. Male (N = 56) and female (N = 56) guinea pigs were randomly assigned to receive daily oral treatment with either PB125 or vehicle control.
View Article and Find Full Text PDFObjectives: This study explored the efficacy of collecting temporal fracture site compliance data via an advanced direct electromagnetic coupling (DEC) system equipped with a Vivaldi-type antenna, novel calibration technique, and multi-antenna setup (termed maDEC) as an approach to monitor acute fracture healing progress in a translational large animal model. The overarching goal of this approach was to provide insights into the acute healing dynamics, offering a promising avenue for optimizing fracture management strategies.
Methods: A sample of twelve sheep, subjected to ostectomies and intramedullary nail fixations, was divided into two groups, simulating normal and impaired healing scenarios.
The right ventricle (RV) mechanical property is an important determinant of its function. However, compared to its elasticity, RV viscoelasticity is much less studied, and it remains unclear how pulmonary hypertension (PH) alters RV viscoelasticity. Our goal was to characterize the changes in RV free wall (RVFW) anisotropic viscoelastic properties with PH development and at varied heart rates.
View Article and Find Full Text PDFObjective: To develop an in vivo experimental model for bone marrow lesions (BMLs) in ovine femorotibial joints.
Study Design: Randomized, prospective experimental study.
Animals: Eighteen healthy, skeletally-mature Dorper cross ewes.
Following herniation of the intervertebral disc, there is a need for advanced surgical strategies to protect the diseased tissue from further herniation and to minimize further degeneration. Accordingly, a novel tissue engineered implant for annulus fibrosus (AF) repair was fabricated three-dimensional fiber deposition and evaluated in a large animal model. Specifically, lumbar spine kinetics were assessed for eight (n = 8) cadaveric ovine lumbar spines in three pure moment loading settings (flexion-extension, lateral bending, and axial rotation) and three clinical conditions (intact, with a defect in the AF, and with the defect treated using the AF repair implant).
View Article and Find Full Text PDFThe increasing evidence of stress-strain hysteresis in large animal or human myocardium calls for extensive characterizations of the passive viscoelastic behavior of the myocardium. Several recent studies have investigated and modeled the viscoelasticity of the left ventricle while the right ventricle (RV) viscoelasticity remains poorly understood. Our goal was to characterize the biaxial viscoelastic behavior of RV free wall (RVFW) using two modeling approaches.
View Article and Find Full Text PDFBackground: Rapid prediction of adverse bone fracture healing outcome (e.g., nonunion and/or delayed union) is essential to advise adjunct therapies to reduce patient suffering and improving healing outcome.
View Article and Find Full Text PDFThe implementation of novel coaxial dipole antennas has been shown to be a satisfactory diagnostic platform for the prediction of orthopaedic bone fracture healing outcomes. These techniques require mechanical deflection of implanted metallic hardware (i.e.
View Article and Find Full Text PDFJ Clin Anesth
October 2022
Study Objective: To minimize the risk of cervical spinal cord injury in patients who have cervical spine pathology, minimizing cervical spine motion during laryngoscopy and tracheal intubation is commonly recommended. However, clinicians may better aim to reduce cervical spinal cord strain during airway management of their patients. The aim of this study was to predict laryngoscope force characteristics (location, magnitude, and direction) that would minimize cervical spine motions and cord strains.
View Article and Find Full Text PDFBackground: Because intubation-mediated cervical spine and spinal cord injury are likely determined by intubation force magnitude, understanding the determinants of intubation force magnitude is clinically relevant. With direct (Macintosh) laryngoscopy, when glottic view is less favorable, anesthesiologists apply greater force. We hypothesized that, when compared with direct (Macintosh) laryngoscopy, intubation force with an optical indirect laryngoscope (Airtraq) would be less dependent on glottic visualization.
View Article and Find Full Text PDFCardiac biomechanics play a significant role in the progression of structural heart diseases (SHDs). SHDs alter baseline myocardial biomechanics leading to single or bi-ventricular dysfunction. But therapies for left ventricle (LV) failure patients do not always work well for right ventricle (RV) failure patients.
View Article and Find Full Text PDFTrauma to the soft tissues of the ankle joint distal syndesmosis often leads to syndesmotic instability, resulting in undesired movement of the talus, abnormal pressure distributions, and ultimately arthritis if deterioration progresses without treatment. Historically, syndesmotic injuries have been repaired by placing a screw across the distal syndesmosis to provide rigid fixation to facilitate ligament repair. While rigid syndesmotic screw fixation immobilizes the ligamentous injury between the tibia and fibula to promote healing, the same screws inhibit normal physiologic movement and dorsiflexion.
View Article and Find Full Text PDFThe interventricular septum contributes to the pumping function of both ventricles. However, unlike the ventricular wall, its mechanical behavior remains largely unknown. To fill the knowledge gap, this study aims to characterize the biaxial and transmural variation of the mechanical properties of the septum and compare it to the free walls of the left and right ventricles (LV/RV).
View Article and Find Full Text PDFBackground: In a closed claims study, most patients experiencing cervical spinal cord injury had stable cervical spines. This raises two questions. First, in the presence of an intact (stable) cervical spine, are there tracheal intubation conditions in which cervical intervertebral motions exceed physiologically normal maximum values? Second, with an intact spine, are there tracheal intubation conditions in which potentially injurious cervical cord strains can occur?
Methods: This study utilized a computational model of the cervical spine and cord to predict intervertebral motions (rotation, translation) and cord strains (stretch, compression).
Background Context: While the clinical effectiveness of recombinant human Platelet Derived Growth Factor-B chain homodimer combined with collagen and β-tricalcium phosphate (rhPDGF-BB + collagen/β-TCP) treatment for indications involving hindfoot and ankle is well-established, it is not approved for use in spinal interbody fusion, and the use of autograft remains the gold standard.
Purpose: The purpose of this study was to compare the effects of rhPDGF-BB + collagen/β-TCP treatment on lumbar spine interbody fusion in an ovine model to those of autograft bone and collagen/β-TCP treatments using biomechanical, radiographic, and histological assessment techniques.
Study Design: Thirty-two skeletally mature Columbian Rambouillet sheep were used to evaluate the safety and effectiveness of rhPDGF-BB + collagen/β-TCP matrix in a lumbar spinal fusion model.
Background: In tissue engineering (TE) strategies, cell processes are regulated by mechanical stimuli. Although TE scaffolds have been developed to replicate tissue-level mechanical properties, it is intractable to experimentally measure and prescribe the cellular micromechanical environment (CME) generated within these constructs. Accordingly, this study aimed to fill this lack of understanding by modeling the CME in TE scaffolds using the finite element method.
View Article and Find Full Text PDFBackground: Expedient prediction of adverse bone fracture healing (delayed- or non-union) is necessary to advise secondary treatments for improving healing outcome to minimize patient suffering. Radiographic imaging, the current standard diagnostic, remains largely ineffective at predicting nonunions during the early stages of fracture healing resulting in mean nonunion diagnosis times exceeding six months. Thus, there remains a clinical deficit necessitating improved diagnostic techniques.
View Article and Find Full Text PDFVentricle dysfunction is the most common cause of heart failure, which leads to high mortality and morbidity. The mechanical behavior of the ventricle is critical to its physiological function. It is known that the ventricle is anisotropic and viscoelastic.
View Article and Find Full Text PDFbioreactors are a promising approach for engineering vascularized autologous bone grafts to repair large bone defects. In this pilot parametric study, we first developed a three-dimensional (3D) printed scaffold uniquely designed to accommodate inclusion of a vascular bundle and facilitate growth factor delivery for accelerated vascular invasion and ectopic bone formation. Second, we established a new sheep deep circumflex iliac artery (DCIA) model as an bioreactor for engineering a vascularized bone graft and evaluated the effect of implantation duration on ectopic bone formation.
View Article and Find Full Text PDFAutologous bone grafts are considered the gold standard grafting material for the treatment of nonunion, but in very large bone defects, traditional autograft alone is insufficient to induce repair. Recombinant human bone morphogenetic protein 2 (rhBMP-2) can stimulate bone regeneration and enhance the healing efficacy of bone grafts. The delivery of rhBMP-2 may even enable engineered synthetic scaffolds to be used in place of autologous bone grafts for the treatment of critical size defects, eliminating risks associated with autologous tissue harvest.
View Article and Find Full Text PDFCell fate in tissue engineering (TE) strategies is paramount to regenerate healthy, functional organs. The mechanical loads experienced by cells play an important role in cell fate. However, in TE scaffolds with a cell-laden hydrogel matrix, it is prohibitively complex to prescribe and measure this cellular micromechanical environment (CME).
View Article and Find Full Text PDFThere have been recent investigations into developing disc replacements and regenerative medicine to treat internal derangements of the temporomandibular joint (TMJ) disc. Previous attempts at disc replacements have faced challenges related in part to a limited understanding of the TMJ's complex mechanical environment. The purpose of this study was to characterize the mechanical behavior of the ovine TMJ disc and to derive viscoelastic constitutive models from the experimental data.
View Article and Find Full Text PDF: Expanded, human connective tissue cells can adopt mesenchymal stromal cell (MSC) properties that are favorable for applications in regenerative medicine. Sheep are used as a large animal model for cell therapies, although for preclinical testing it is important to establish whether ovine cells resemble humans in their tendency to adopt MSC properties. The objective of this study was to investigate whether cells from five ovine connective tissues are MSC-like in their propensity for extensive expansion and immunophenotype.
View Article and Find Full Text PDFCurrent diagnostic modalities, such as radiographs or computed tomography, exhibit limited ability to predict the outcome of bone fracture healing. Failed fracture healing after orthopaedic surgical treatments are typically treated by secondary surgery; however, the negative correlation of time between primary and secondary surgeries with resultant health outcome and medical cost accumulation drives the need for improved diagnostic tools. This study describes the simultaneous use of multiple (n = 5) implantable flexible substrate wireless microelectromechanical (fsBioMEMS) sensors adhered to an intramedullary nail (IMN) to quantify the biomechanical environment along the length of fracture fixation hardware during simulated healing in ex vivo ovine tibiae.
View Article and Find Full Text PDF