Background: An increasing body of evidence implicates the resident gut microbiota as playing a critical role in type 2 diabetes (T2D) pathogenesis. We previously reported significant improvement in postprandial glucose control in human participants with T2D following 12-week administration of a 5-strain novel probiotic formulation ('WBF-011') in a double-blind, randomized, placebo controlled setting (NCT03893422). While the clinical endpoints were encouraging, additional exploratory measurements were needed in order to link the motivating mechanistic hypothesis - increased short-chain fatty acids - with markers of disease.
View Article and Find Full Text PDFDietary fibers impact gut colonic health, through the production of short-chain fatty acids. A low-fiber diet has been linked to lower bacterial diversity, obesity, type 2 diabetes, and promotion of mucosal pathogens. Glycoside hydrolases (GHs) are important enzymes involved in the bacterial catabolism of fiber into short-chain fatty acids.
View Article and Find Full Text PDFThe candidate phyla radiation (CPR) comprises a large monophyletic group of bacterial lineages known almost exclusively based on genomes obtained using cultivation-independent methods. Within the CPR, (BD1-5) are particularly poorly understood due to undersampling and the inherent fragmented nature of available genomes. Here, we report the first closed, curated genome of a gracilibacterium from an enrichment experiment inoculated from the Gulf of Mexico and designed to investigate hydrocarbon degradation.
View Article and Find Full Text PDFMethanogenesis is an ancient metabolism of key ecological relevance, with direct impact on the evolution of Earth's climate. Recent results suggest that the diversity of methane metabolisms and their derivations have probably been vastly underestimated. Here, by probing thousands of publicly available metagenomes for homologues of methyl-coenzyme M reductase complex (MCR), we have obtained ten metagenome-assembled genomes (MAGs) belonging to potential methanogenic, anaerobic methanotrophic and short-chain alkane-oxidizing archaea.
View Article and Find Full Text PDFMicrobial communities are critical to ecosystem function. A key objective of metagenomic studies is to analyse organism-specific metabolic pathways and reconstruct community interaction networks. This requires accurate assignment of assembled genome fragments to genomes.
View Article and Find Full Text PDFAn enormous diversity of previously unknown bacteria and archaea has been discovered recently, yet their functional capacities and distributions in the terrestrial subsurface remain uncertain. Here, we continually sampled a CO-driven geyser (Colorado Plateau, Utah, USA) over its 5-day eruption cycle to test the hypothesis that stratified, sandstone-hosted aquifers sampled over three phases of the eruption cycle have microbial communities that differ both in membership and function. Genome-resolved metagenomics, single-cell genomics and geochemical analyses confirmed this hypothesis and linked microorganisms to groundwater compositions from different depths.
View Article and Find Full Text PDFIn this work, we present a comprehensive analysis of the H3K36 histone methyltransferases Set2 and Ash1 in the filamentous ascomycete In , one single methyltransferase, Set2, confers all H3K36 methylation, while there are two members of the Set2 family in filamentous fungi, and even more H3K36 methyltransferases in higher eukaryotes. Whereas the yeast Set2 homolog has been analyzed in fungi previously, the second member of the Set2 family, designated Ash1, has not been described for any filamentous fungus. Western blot and ChIP-Seq analyses confirmed that Set2 and Ash1 are H3K36-specific histone methyltransferases that deposit H3K36me3 at specific loci: Set2 is most likely responsible for H3K36 methylation of euchromatic regions of the genome, while Ash1 methylates H3K36 at the subtelomeric regions (facultative heterochromatin) of all chromosomes, including the accessory chromosome XII.
View Article and Find Full Text PDFFusarium fujikuroi causes bakanae ("foolish seedling") disease of rice which is characterized by hyper-elongation of seedlings resulting from production of gibberellic acids (GAs) by the fungus. This plant pathogen is also known for production of harmful mycotoxins, such as fusarins, fusaric acid, apicidin F and beauvericin. Recently, we generated the first de novo genome sequence of F.
View Article and Find Full Text PDFGATA-type transcription factors (TFs) such as the nitrogen regulators AreA and AreB, or the light-responsive TFs WC-1 and WC-2, play global roles in fungal growth and development. The conserved GATA TF NsdD is known as an activator of sexual development and key repressor of conidiation in , and as light-regulated repressor of macroconidia formation in In the present study, we functionally characterized the NsdD ortholog in , named Csm1. Deletion of this gene resulted in elevated microconidia formation in the wild-type (WT) and restoration of conidiation in the non-sporulating velvet mutant Δ demonstrating that Csm1 also plays a role as repressor of conidiation in .
View Article and Find Full Text PDFThe (DWH) accident released an estimated 4.1 million barrels of oil and 10 mol of natural gas into the Gulf of Mexico, forming deep-sea plumes of dispersed oil droplets and dissolved gases that were largely degraded by bacteria. During the course of this 3-mo disaster a series of different bacterial taxa were enriched in succession within deep plumes, but the metabolic capabilities of the different populations that controlled degradation rates of crude oil components are poorly understood.
View Article and Find Full Text PDFThe biosynthesis of multiple secondary metabolites in the phytopathogenic ascomycete Fusarium fujikuroi is strongly affected by nitrogen availability. Here, we present the first genome-wide transcriptome and proteome analysis that compared the wild type and deletion mutants of the two major nitrogen regulators AreA and AreB. We show that AreB acts not simply as an antagonist of AreA counteracting the expression of AreA target genes as suggested based on the yeast model.
View Article and Find Full Text PDFBackground: Whereas an increasing number of pathogenic and mutualistic ascomycetous species were sequenced in the past decade, species showing a seemingly neutral association such as root endophytes received less attention. In the present study, the genome of Phialocephala subalpina, the most frequent species of the Phialocephala fortinii s.l.
View Article and Find Full Text PDFThe rice pathogenic fungus Fusarium fujikuroi is known to produce a large variety of secondary metabolites. Besides the gibberellins, causing the bakanae effect in infected rice seedlings, the fungus produces several mycotoxins and pigments. Among the 47 putative secondary metabolite gene clusters identified in the genome of F.
View Article and Find Full Text PDFSmut fungi are plant pathogens mostly parasitizing wild species of grasses as well as domesticated cereal crops. Genome analysis of several smut fungi including Ustilago maydis revealed a singular clustered organization of genes encoding secreted effectors. In U.
View Article and Find Full Text PDFFusaric acid (FSA) is a mycotoxin produced by several fusaria, including the rice pathogen Fusarium fujikuroi. Genes involved in FSA biosynthesis were previously identified as a cluster containing a polyketide synthase (PKS)-encoding (FUB1) and four additional genes (FUB2-FUB5). However, the biosynthetic steps leading to FSA as well as the origin of the nitrogen atom, which is incorporated into the polyketide backbone, remained unknown.
View Article and Find Full Text PDFFungal secondary metabolite biosynthesis genes are of major interest due to the pharmacological properties of their products (like mycotoxins and antibiotics). The genome of the plant pathogenic fungus Fusarium graminearum codes for a large number of candidate enzymes involved in secondary metabolite biosynthesis. However, the chemical nature of most enzymatic products of proteins encoded by putative secondary metabolism biosynthetic genes is largely unknown.
View Article and Find Full Text PDFThe plant pathogenic fungus Fusarium fujikuroi is the causal agent of bakanae disease on rice due to its ability to produce gibberellins. Besides these phytohormones, F. fujikuroi is able to produce several other secondary metabolites (SMs).
View Article and Find Full Text PDFThe fungus F. fujikuroi is well known for its production of gibberellins causing the 'bakanae' disease of rice. Besides these plant hormones, it is able to produce other secondary metabolites (SMs), such as pigments and mycotoxins.
View Article and Find Full Text PDFLipoid proteinosis (LP) is one of the rare, recessive autosomal disorders clinically characterized by widespread deposition of hyaline-like material in the skin, mucosa and viscera. Classical features include beaded eyelid papules, laryngeal infiltration and hoarseness of voice caused by pathogenic mutations in the ECM1 gene located on 1q21.2.
View Article and Find Full Text PDFBackground: Xeroderma Pigmentosum (XP) is a rare skin disorder characterized by skin hypersensitivity to sunlight and abnormal pigmentation. The aim of this study was to investigate the genetic cause of a severe XP phenotype in a consanguineous Pakistani family and in silico characterization of any identified disease-associated mutation.
Results: The XP complementation group was assigned by genotyping of family for known XP loci.
In this work, the biosynthesis and regulation of the polyketide synthase/nonribosomal peptide synthetase (PKS/NRPS)-derived mutagenic mycotoxin fusarin C was studied in the fungus Fusarium fujikuroi. The fusarin gene cluster consists of nine genes (fus1-fus9) that are coexpressed under high-nitrogen and acidic pH conditions. Chromatin immunoprecipitation revealed a correlation between high expression and enrichment of activating H3K9-acetylation marks under inducing conditions.
View Article and Find Full Text PDFThe fungus Fusarium fujikuroi causes "bakanae" disease of rice due to its ability to produce gibberellins (GAs), but it is also known for producing harmful mycotoxins. However, the genetic capacity for the whole arsenal of natural compounds and their role in the fungus' interaction with rice remained unknown. Here, we present a high-quality genome sequence of F.
View Article and Find Full Text PDF