Publications by authors named "Christian M Bako"

Many PCB-degrading aerobes have been identified which may serve as bioaugmentation strains for aerobic, in situ bioremediation or in combination with dredging operations. The present work describes a lab-scale PCB biodegradation assay which can be used to screen potential bioaugmentation strains or consortia for their ability to decrease PCB mass flux from contaminated sediment to air through biodegradation of freely dissolved PCBs that have desorbed from sediment particles. The assay uses two types of passive samplers to simultaneously measure PCB mass that is freely dissolved in aqueous solution and PCB mass that has volatilized to the headspace of the bioreactor.

View Article and Find Full Text PDF

We conducted experiments to determine whether bioaugmentation with aerobic, polychlorinated biphenyl (PCB)-degrading microorganisms can mitigate polychlorinated biphenyl (PCB) emissions from contaminated sediment to air. strain LB400 was added to bioreactors containing PCB-contaminated site sediment. PCB mass in both the headspace and aqueous bioreactor compartments was measured using passive samplers over 35 days.

View Article and Find Full Text PDF

Methoxylated polychlorinated biphenyls (MeO-PCBs) are overlooked metabolites of PCBs. In general, they are more toxic to plants than their parent congeners. However, information on the fate of MeO-PCBs and the relationship between methoxylated, hydroxylated and sulfated metabolites of PCBs in plants is scarce.

View Article and Find Full Text PDF

This dataset describes the biodegradation of polychlorinated biphenyl (PCB) congeners by LB400 in absence and presence of PCB-contaminated sediment slurry, over time [1]. In absence of sediment, PCBs were extracted from aqueous bioreactors by liquid-liquid extraction (LLE) with hexane. In presence of sediment, the extraction method used was a modification of U.

View Article and Find Full Text PDF

Experiments were conducted to measure biodegradation of polychlorinated biphenyl (PCB) congeners contained in mixture Aroclor 1248 and congeners present in wastewater lagoon sediment contaminated decades earlier at Altavista, Virginia. A well-characterized strain of aerobic PCB-degrading bacteria, Paraburkholderia xenovorans LB400 was incubated in laboratory bioreactors with PCB-contaminated sediment collected at the site. The experiments evaluated strain LB400's ability to degrade PCBs in absence of sediment and in PCB-contaminated sediment slurry.

View Article and Find Full Text PDF