Publications by authors named "Christian Lee"

Esophageal organoids from a variety of pathologies including cancer are grown in Advanced Dulbecco's Modified Eagle Medium-Nutrient Mixture F12 (hereafter ADF). However, the currently available ADF-based formulations are suboptimal for normal human esophageal organoids, limiting the ability to compare normal esophageal organoids with those representing a given disease state. We have utilized immortalized normal human esophageal epithelial cell (keratinocyte) lines EPC1 and EPC2 and endoscopic normal esophageal biopsies to generate three-dimensional (3D) organoids.

View Article and Find Full Text PDF

Purpose: Limited information exists on the possible effects of ethnicity on corneal endothelial cell parameters and their changes during cataract surgery. Thus, we evaluated corneal endothelial cell density (ECD) and endothelial cell loss (ECL) during surgery for senile cataract in Hispanic and non-Hispanic White adults.

Methods: This retrospective study included 312 eyes of 227 patients ≥50 years who underwent phacoemulsification with intraocular lens implantation for senile cataract.

View Article and Find Full Text PDF

Purpose: It is well-known that patients' perceptions of their disease can impact management strategies and disease outcomes. Limited knowledge exists on such perceptions in dry eye disease (DED) and the role of language in these perceptions. Herein, we compared the perceptions about DED between Spanish- and English-speaking patients.

View Article and Find Full Text PDF

Background: Esophageal organoids from a variety of pathologies including cancer are grown in Advanced Dulbecco's Modified Eagle Medium-Nutrient Mixture F12 (hereafter ADF). However, the currently available ADF-based formulations are suboptimal for normal human esophageal organoids, limiting the ability to compare normal esophageal organoids with those representing a given disease state.

Methods: We have utilized immortalized normal human esophageal epithelial cell (keratinocyte) lines EPC1 and EPC2 and endoscopic normal esophageal biopsies to generate three-dimensional (3D) organoids.

View Article and Find Full Text PDF
Article Synopsis
  • This paper introduces data-driven methods to connect neural activity and behavior by focusing on unsupervised behavioral analysis and developing generalized neural decoding models.
  • It utilizes an autoencoder for clustering behavioral data and an LSTM-based adversarial variational autoencoder to reduce subject variability in neural data.
  • The study shows that this approach achieves 89.7% accuracy in cross-subject neural decoding, highlighting its effectiveness in unsupervised analysis and the potential to improve understanding of the relationship between neural activity and behavior.
View Article and Find Full Text PDF

The anterior dorsolateral striatum (DLS) is heavily innervated by convergent excitatory projections from the primary motor (M1) and sensory cortex (S1) and considered an important site of sensorimotor integration. M1 and S1 corticostriatal synapses have functional differences in their connection strength with striatal spiny projection neurons (SPNs) and fast-spiking interneurons (FSIs) in the DLS and, as a result, exert distinct influences on sensory-guided behaviors. In the present study, we tested whether M1 and S1 inputs exhibit differences in the subcellular anatomical distribution of striatal neurons.

View Article and Find Full Text PDF

Background: The generalizability of the Surviving Sepsis Campaign (SSC) guidelines to various patient populations and hospital settings has been debated. A quantitative assessment of the diversity and representation in the clinical evidence supporting the guidelines would help evaluate the generalizability of the recommendations and identify strategic research goals and priorities. In this study, we evaluated the diversity of patients in the original studies, in terms of sex, race/ethnicity, and geographical location.

View Article and Find Full Text PDF

Unlabelled: The anterior dorsolateral striatum (DLS) is heavily innervated by convergent excitatory projections from the primary motor (M1) and sensory cortex (S1) and is considered an important site of sensorimotor integration. M1 and S1 corticostriatal synapses have functional differences in the strength of their connections with striatal spiny projection neurons (SPNs) and fast-spiking interneurons (FSIs) in the DLS, and as a result exert an opposing influence on sensory-guided behaviors. In the present study, we tested whether M1 and S1 inputs exhibit differences in the subcellular anatomical distribution onto striatal neurons.

View Article and Find Full Text PDF

Studies have proposed that the routine use of the modified gamma-cyclodextrin, sugammadex, could provide perioperative time savings. However, these investigations have been limited to small group analyses. The purpose of this study was to test the effectiveness of sugammadex on perioperative times when compared to neostigmine under general clinical practice conditions following rocuronium-induced neuromuscular blockade for laparoscopic cholecystectomy.

View Article and Find Full Text PDF

Random dropout has become a standard regularization technique in artificial neural networks (ANNs), but it is currently unknown whether an analogous mechanism exists in biological neural networks (BioNNs). If it does, its structure is likely to be optimized by hundreds of millions of years of evolution, which may suggest novel dropout strategies in large-scale ANNs. We propose that the brain serotonergic fibers (axons) meet some of the expected criteria because of their ubiquitous presence, stochastic structure, and ability to grow throughout the individual's lifespan.

View Article and Find Full Text PDF

Background: Seasonal influenza poses a significant risk, and patients can benefit from early diagnosis and treatment. However, underdiagnosis and undertreatment remain widespread. We developed and compared clinical feature-based machine learning (ML) algorithms that can accurately predict influenza infection in emergency departments (EDs) among patients with influenza-like illness (ILI).

View Article and Find Full Text PDF
Article Synopsis
  • This study examines how different types of hydroxypropyl methylcellulose (HPMC) capsules affect the performance of dry powder inhalers (DPIs) with two different formulations: one with a lactose carrier and one without.
  • The results show no significant performance differences among capsules in the carrier-based formulation, but notable differences in the carrier-free formulation, particularly with Embocaps® VG capsules performing better in terms of emitted fraction and particle size.
  • Factors like aerosol performance variability, capsule detachment during use, and the mechanical properties of the capsules are important when selecting capsule types for different formulations.
View Article and Find Full Text PDF

The selective inhibition of RET kinase as a treatment for relevant cancer types including lung adenocarcinoma has garnered considerable interest in recent years and prompted a variety of efforts toward the discovery of small-molecule therapeutics. Hits uncovered via the analysis of archival kinase data ultimately led to the identification of a promising pyrrolo[2,3-]pyrimidine scaffold. The optimization of this pyrrolo[2,3-]pyrimidine core resulted in compound , which demonstrated potent RET kinase inhibition and robust efficacy in RET-driven tumor xenografts upon multiday dosing in mice.

View Article and Find Full Text PDF

Long non-coding RNAs (lncRNAs) are increasingly recognized as functional units in cancer and powerful biomarkers; however, most remain uncharacterized. Here, we analyze 5,592 prognostic lncRNAs in 9,446 cancers of 30 types using machine learning. We identify 166 lncRNAs whose expression correlates with survival and improves the accuracy of common clinical variables, molecular features, and cancer subtypes.

View Article and Find Full Text PDF

The most common events in breast cancer (BC) involve chromosome arm losses and gains. Here we describe identification of 1089 gene-centric common insertion sites (gCIS) from transposon-based screens in 8 mouse models of BC. Some gCIS are driver-specific, others driver non-specific, and still others associated with tumor histology.

View Article and Find Full Text PDF

Background: Cancer genomes are shaped by mutational processes with complex spatial variation at multiple scales. Entire classes of regulatory elements are affected by local variations in mutation frequency. However, the underlying mechanisms with functional and genetic determinants remain poorly understood.

View Article and Find Full Text PDF

Somatodendritic dopamine (DA) release from midbrain DA neurons activates D2 autoreceptors on these cells to regulate their activity. However, the source of autoregulatory DA remains controversial. Here, we test the hypothesis that D2 autoreceptors on a given DA neuron in the substantia nigra pars compacta (SNc) are activated primarily by DA released from that same cell, rather than from its neighbors.

View Article and Find Full Text PDF

LONP1 is an AAA+ protease that maintains mitochondrial homeostasis by removing damaged or misfolded proteins. Elevated activity and expression of LONP1 promotes cancer cell proliferation and resistance to apoptosis-inducing reagents. Despite the importance of LONP1 in human biology and disease, very few LONP1 inhibitors have been described in the literature.

View Article and Find Full Text PDF

RET (REarranged during Transfection) kinase gain-of-function aberrancies have been identified as potential oncogenic drivers in lung adenocarcinoma, along with several other cancer types, prompting the discovery and assessment of selective inhibitors. Internal mining and analysis of relevant kinase data informed the decision to investigate a pyrazolo[1,5-]pyrimidine scaffold, where subsequent optimization led to the identification of compound WF-47-JS03 (), a potent RET kinase inhibitor with >500-fold selectivity against KDR (Kinase insert Domain Receptor) in cellular assays. In subsequent mouse studies, compound demonstrated effective brain penetration and was found to induce strong regression of RET-driven tumor xenografts at a well-tolerated dose (10 mg/kg, po, qd).

View Article and Find Full Text PDF

Fundamental aspects of brain function, including development, plasticity, learning, and memory, can take place over time scales of days to years. Chronic in vivo imaging of neural activity with cellular resolution is a powerful method for tracking the long-term activity of neural circuits. We review recent advances in our understanding of neural circuit function from diverse brain regions that have been enabled by chronic in vivo cellular imaging.

View Article and Find Full Text PDF

The striatum is the main input nucleus of the basal ganglia and is a key site of sensorimotor integration. While the striatum receives extensive excitatory afferents from the cerebral cortex, the influence of different cortical areas on striatal circuitry and behavior is unknown. Here, we find that corticostriatal inputs from whisker-related primary somatosensory (S1) and motor (M1) cortex differentially innervate projection neurons and interneurons in the dorsal striatum and exert opposing effects on sensory-guided behavior.

View Article and Find Full Text PDF

The functional state of denervated muscle is a critical factor in the ability to restore movement after injury- or disease-related paralysis. Here we used peripheral optogenetic stimulation and transcriptome profiling in the mouse whisker system to investigate the time course of changes in neuromuscular function following complete unilateral facial nerve transection. While most skeletal muscles rapidly lose functionality after lower motor neuron denervation, optogenetic muscle stimulation of the paralyzed whisker pad revealed sustained increases in the sensitivity, velocity, and amplitude of whisker movements, and reduced fatigability, starting 48 h after denervation.

View Article and Find Full Text PDF

Widefield optical imaging of neuronal populations over large portions of the cerebral cortex in awake behaving animals provides a unique opportunity for investigating the relationship between brain function and behavior. In this paper, we demonstrate that the temporal characteristics of calcium dynamics obtained through widefield imaging can be utilized to infer the corresponding behavior. Cortical activity in transgenic calcium reporter mice (n=6) expressing GCaMP6f in neocortical pyramidal neurons is recorded during active whisking (AW) and no whisking (NW).

View Article and Find Full Text PDF

Over a decade of genome-wide association, studies have made great strides toward the detection of genes and genetic mechanisms underlying complex traits. However, the majority of associated loci reside in non-coding regions that are functionally uncharacterized in general. Now, the availability of large-scale tissue and cell type-specific transcriptome and epigenome data enables us to elucidate how non-coding genetic variants can affect gene expressions and are associated with phenotypic changes.

View Article and Find Full Text PDF

Transgenic mouse lines are invaluable tools for neuroscience but, as with any technique, care must be taken to ensure that the tool itself does not unduly affect the system under study. Here we report aberrant electrical activity, similar to interictal spikes, and accompanying fluorescence events in some genotypes of transgenic mice expressing GCaMP6 genetically encoded calcium sensors. These epileptiform events have been observed particularly, but not exclusively, in mice with Emx1-Cre and Ai93 transgenes, of either sex, across multiple laboratories.

View Article and Find Full Text PDF