Publications by authors named "Christian Le Grimellec"

In this work, we propose a reliable microcontact printing (μCP) process for generating Patterned Supported Phospholipids Bilayer (P-SPB) confined by Poly-L-(lysine)-grafted-polyethylene(glycol) (Pll-g-PEG) molecular barriers. The efficiency of Pll-g-PEG for inhibiting the fusion process of incubated liposome was first analyzed by Quartz Micro Balance (QCM) measurements. The quality and stability of Pll-g-PEG patterns were then both verified by fluorescence microscopy and Atomic Force Microscopy (AFM) in liquid media.

View Article and Find Full Text PDF

Formation of fibrillar structures of proteins that deposit into aggregates has been suggested to play a key role in various neurodegenerative diseases. However mechanisms and dynamics of fibrillization remains to be elucidated. We have previously established that lithostathine, a protein overexpressed in the pre-clinical stages of Alzheimer's disease and present in the pathognomonic lesions associated with this disease, form fibrillar aggregates after its N-terminal truncation.

View Article and Find Full Text PDF

Hepatitis B virus envelope is mainly composed of three forms of the same protein expressed from different start codons of the same open reading frame. The smaller form named S protein corresponds to the C-terminal common region and represents about 80% of the envelope proteins. It is mainly referred as hepatitis B virus surface antigen (HBsAg).

View Article and Find Full Text PDF

Fusion of the influenza A H1N1 virus envelope with the endosomal membrane at low pH allows the intracellular delivery of the viral genome and plays an essential role in the infection process. Low pH induces an irreversible modification of the virus envelope, which has so far resisted 3D structural analysis, partly due to the virus pleiomorphy. This study showed that atomic force microscopy (AFM) in physiological buffer could be used to image the structural details of the virus envelope, both at neutral pH and after a low-pH treatment.

View Article and Find Full Text PDF

Elucidating origin, composition, size, and lifetime of microdomains in biological membranes remains a major issue for the understanding of cell biology. For lipid domains, the lack of a direct access to the behaviour of samples at the mesoscopic scale has constituted for long a major obstacle to their characterization, even in simple model systems made of immiscible binary mixtures. By its capacity to image soft surfaces with a resolution that extends from the molecular to the microscopic level, in air as well as under liquid, atomic force microscopy (AFM) has filled this gap and has become an inescapable tool in the study of the surface topography of model membrane domains, the first essential step for the understanding of biomembranes organization.

View Article and Find Full Text PDF

High-speed atomic force microscopy (HS-AFM) is becoming a reference tool for the study of dynamic biological processes. The spatial and time resolutions of HS-AFM are on the order of nanometers and milliseconds, respectively, and allow structural and functional characterization of biological processes at the single-molecule level. In this work we present contact-mode HS-AFM movies of purple membranes containing two-dimensional arrays of bacteriorhodopsin (bR).

View Article and Find Full Text PDF

The flagellar nano-motor of bacteria is one of the most interesting and amazing natural nano-machine. Despite its discovery 30 years ago, some details of its structure and mechanisms are not yet elucidated. Several studies have revealed some important aspects of its structure and numerous data are available today; however, the inner mechanisms of the nano-motor have not been yet resolved, partially due to the lack of information about the 3D assembly, shape and interactions of the different parts in experimental environment as close as possible as the native cellular conditions.

View Article and Find Full Text PDF

Tetraspanins regulate cell migration, sperm-egg fusion, and viral infection. Through interactions with one another and other cell surface proteins, tetraspanins form a network of molecular interactions called the tetraspanin web. In this study, we use single-molecule fluorescence microscopy to dissect dynamics and partitioning of the tetraspanin CD9.

View Article and Find Full Text PDF

Characterization of lateral organization of plasma membranes is a prerequisite to the understanding of membrane structure-function relationships in living cells. Lipid-lipid and lipid-protein interactions are responsible for the existence of various membrane microdomains involved in cell signalization and in numerous pathologies. Developing approaches for characterizing microdomains associate identification tools like recognition imaging with high-resolution topographical imaging.

View Article and Find Full Text PDF

To introduce this special issue of the Journal of Molecular Recognition dedicated to the applications of atomic force microscopy (AFM) in life sciences, this paper presents a short summary of the history of AFM in biology. Based on contributions from the first international conference of AFM in biological sciences and medicine (AFM BioMed Barcelona, 19-21 April 2007), we present and discuss recent progress made using AFM for studying cells and cellular interactions, probing single molecules, imaging biosurfaces at high resolution and investigating model membranes and their interactions. Future prospects in these different fields are also highlighted.

View Article and Find Full Text PDF

In plasma membranes, most glycosylphosphatidylinositol-anchored proteins (GPI proteins) would be associated with ordered microdomains enriched in sphingolipids and cholesterol. Debates on the composition and the nano- or mesoscales organization of these membrane domains are still opened. This complexity of biomembranes explains the use, in the recent years, of both model systems and atomic force microscopy (AFM) approaches to better characterize GPI proteins/membranes interactions.

View Article and Find Full Text PDF

In plasma membranes, most of glycosylphosphatidylinositol (GPI)-anchored proteins would be associated with rafts, a category of ordered microdomains enriched in sphingolipids and cholesterol (Ch). They would be also concentrated in the detergent resistant membranes (DRMs), a plasma membrane fraction extracted at low temperature. Preferential localization of GPI-anchored proteins in these membrane domains is essentially governed by their high lipid order, as compared to their environment.

View Article and Find Full Text PDF

Glycosylphosphatidyl-inositol (GPI)-anchored proteins preferentially localize in the most ordered regions of the cell plasma membrane. Acyl and alkyl chain composition of GPI anchors influence the association with the ordered domains. This suggests that, conversely, changes in the fluid and in the ordered domains lipid composition affect the interaction of GPI-anchored proteins with membrane microdomains.

View Article and Find Full Text PDF

Reconstituting artificial membranes for in vitro studies of cell barrier mechanisms and properties is of major interest in biology. Here, artificial membranes supported on porous silicon photonic crystal reflectors are prepared and investigated. The materials are of interest for label-free probing of supported membrane events such as protein binding, molecular recognition, and transport.

View Article and Find Full Text PDF

Reconstitution of transmembrane proteins by direct incorporation into supported lipid bilayers (SLBs) is a new method to provide suitable samples for high-resolution atomic force microscopy (AFM) analysis of membrane proteins. First experiments have reported successful incorporation of proteins into detergent-destabilized SLBs. Here, we analyzed by AFM the incorporation of membrane proteins in the presence of calcium, a divalent cation functionally important for several membrane proteins.

View Article and Find Full Text PDF

The heterologous expression and purification of membrane proteins represent major limitations for their functional and structural analysis. Here we describe a new method of incorporation of transmembrane proteins in planar lipid bilayer starting from 1 pmol of solubilized proteins. The principle relies on the direct incorporation of solubilized proteins into a preformed planar lipid bilayer destabilized by dodecyl-beta-maltoside or dodecyl-beta-thiomaltoside, two detergents widely used in membrane biochemistry.

View Article and Find Full Text PDF

Primary amphipathic cell-penetrating peptides transport cargoes across cell membranes with high efficiency and low lytic activity. These primary amphipathic peptides were previously shown to form aggregates or supramolecular structures in mixed lipid-peptide monolayers, but their behavior in lipid bilayers remains to be characterized. Using atomic force microscopy, we have examined the interactions of P(alpha), a primary amphipathic cell-penetrating peptide which remains alpha-helical whatever the environment, with dipalmitoylphosphatidylcholine (DPPC) bilayers.

View Article and Find Full Text PDF

Viral infections are propagated by the fusing of the viral membrane with a host cell membrane. Initiation of the fusion process occurs upon perturbation of the membrane of the cell under attack by a subunit of the viral protein known as a fusion peptide. Fusion peptides must insert into the lipid-rich host cell membrane to initiate rupture and merging of the two entities, but much remains unknown about the details of the fusion process.

View Article and Find Full Text PDF

The mesoscopic organization adopted by two primary amphipathic peptides, P(beta) and P(alpha), in Langmuir-Blodgett (LB) films made of either the pure peptide or peptide-phospholipid mixtures was examined by atomic force microscopy. P(beta), a potent cell-penetrating peptide (CPP), and P(alpha) mainly differ by their conformational states, predominantly a beta-sheet for P(beta) and an alpha-helix for P(alpha), as determined by Fourier transform infrared spectroscopy. LB films of pure peptide, transferred significantly below their collapse pressure, were characterized by the presence of supramolecular structures, globular aggregates for P(beta) and filaments for P(alpha), inserted into the monomolecular film.

View Article and Find Full Text PDF

The atomic force microscope (AFM) allows to explore the surface of biological samples bathed in physiological solutions, with vertical and horizontal resolutions ranging from nanometers to angströms. Complex biological structures as well as single molecules can be observed and recent examples of the possibilities offered by the AFM in the imaging of intact cells, isolated membranes, membrane model systems and single molecules are discussed in this review. Applications where the AFM tip is used as a nanotool to manipulate biomolecules and to determine intra and intermolecular forces from single molecules are also presented.

View Article and Find Full Text PDF

Human calcitonin and its C-terminal fragment 9-32 (hCT(9-32)) administered in a spray translocate into respiratory nasal epithelium with an effect similar to intravenous injection. hCT(9-32) is an efficient carrier to transfer the green fluorescent protein into excised bovine nasal mucosa. To understand the translocation of hCT(9-32) across plasma membranes, we investigated its interactions with phospholipids and its interfacial structure using model lipid monolayers.

View Article and Find Full Text PDF
Article Synopsis
  • Sphingomyelin (SM) is essential for creating lipid microdomains called rafts that are enriched in cholesterol (Chl) within cell membranes.
  • Atomic force microscopy (AFM) was utilized to investigate the structure of SM microdomains in bilayers made from SM mixed with either dioleoylphosphatidylcholine (DOPC) or palmitoyl-oleoyl-phosphatidylcholine (POPC).
  • The study revealed that the gel phase of SM domains can vary significantly in size and shape, leading to different structural behaviors based on whether the bilayers contain diunsaturated or mixed-saturated phosphatidylcholine, indicating the need for more research using the more physiologically relevant POPC.
View Article and Find Full Text PDF
Article Synopsis
  • Researchers studied bilayers made from a mixture of two types of phosphatidylcholine (DOPC and DPPC) to see how a specific peptide interacts with membranes.
  • Atomic force microscopy revealed that a fragment of human calcitonin (hCT (9-32)), either on its own or attached to a protein, forms aggregates in certain lipid phases depending on the presence of cholesterol.
  • The findings suggest that hCT (9-32) is crucial for how the peptide-cargo complex is positioned in membranes and may destabilize membranes through a "carpet-like" mechanism to aid in its carrier function.
View Article and Find Full Text PDF

To identify rules for the design of efficient cell-penetrating peptides that deliver therapeutic agents into subcellular compartments, we compared the properties of two closely related primary amphipathic peptides that mainly differ by their conformational state. On the basis of a peptide Pbeta that is nonstructured in water and that promotes efficient cellular uptake of nucleic acids through noncovalent association, we have designed a peptide [Palpha] that is predicted to adopt a helical conformation. We show that [Pbeta] undergoes a lipid-induced conformational transition into a sheet structure, while [Palpha] remains helical.

View Article and Find Full Text PDF

Simple lipid binary systems are intensively used to understand the formation of domains in biological membranes. The size of individual domains present in the gel/fluid coexistence region of single supported bilayers, determined by atomic force microscopy (AFM), generally exceeds by two to three orders of magnitude that estimated from multibilayers membranes by indirect spectroscopic methods. In this article, the topography of equimolar dimyristoylphosphatidylcholine/distearoylphosphatidylcholine (DMPC/DSPC) multibilayers, made of two superimposed bilayers supported on mica surface, was studied by AFM in a temperature range from room temperature to 45 degrees C.

View Article and Find Full Text PDF