Publications by authors named "Christian Lapitan"

The subgroup of viridans group streptococci are important human pathogens. We previously showed that a substantial portion of strains (>25%) are 'destined' to develop rapid, high-level, and stable daptomycin (DAP) resistance (DAP-R) during DAP exposures in vitro. Such DAP-R is often accompanied by perturbations in distinct membrane phenotypes and metabolic pathways.

View Article and Find Full Text PDF

The Streptococcus mitis subgroup of the viridans group streptococci (VGS) are the most common cause of infective endocarditis (IE) in many parts of the world. These organisms are frequently resistant to standard β-lactams (e.g.

View Article and Find Full Text PDF

is a fermentative bacterium that relies on lactate dehydrogenase to balance its redox poise and keep glycolysis active. Metabolomic analysis of an in vitro-derived daptomycin-resistant (DAP-R) strain (351-D10) revealed differences in glucose catabolism relative to its DAP-susceptible (DAP-S) parental strain, 351. Metabolic changes associated with the transition to this DAP-R phenotype suggested that inhibiting glycolysis could alter DAP susceptibility.

View Article and Find Full Text PDF

Increased usage of daptomycin (DAP) for methicillin-resistant Staphylococcus aureus (MRSA) infections has led to emergence of DAP-resistant (DAP-R) strains, resulting in treatment failures. DAP-fosfomycin (Fosfo) combinations are synergistically active against MRSA, although the mechanism(s) of this interaction is not fully understood. The current study explored four unique but likely interrelated activities of DAP-Fosfo combinations: (i) synergistic killing, (ii) prevention of evolution of DAP-R, (iii) resensitization of already DAP-R subpopulations to a DAP-susceptible (DAP-S) phenotype, and (iv) perturbations of specific cell envelope phenotypes known to correlate with DAP-R in MRSA.

View Article and Find Full Text PDF

The reversal of daptomycin resistance in MRSA to a daptomycin-susceptible phenotype following prolonged passage in selected β-lactams occurs coincident with the accumulation of multiple point mutations in the gene. MprF regulates surface charge by modulating the content and translocation of the positively charged cell membrane phospholipid, lysyl-phosphatidylglycerol (LPG). The precise cell membrane adaptations accompanying such β-lactam-induced perturbations are unknown.

View Article and Find Full Text PDF