Phonon polaritons (PhPs), light coupled to lattice vibrations, in the highly anisotropic polar layered material molybdenum trioxide (α-MoO) are currently the focus of intense research efforts due to their extreme subwavelength field confinement, directional propagation, and unprecedented low losses. Nevertheless, prior research has primarily concentrated on exploiting the squeezing and steering capabilities of α-MoO PhPs, without inquiring much into the dominant microscopic mechanism that determines their long lifetimes, which is key for their implementation in nanophotonic applications. This study delves into the fundamental processes that govern PhP damping in α-MoO by combining calculations with scattering-type scanning near-field optical microscopy (s-SNOM) and Fourier transform infrared (FTIR) spectroscopy measurements across a broad temperature range (8-300 K).
View Article and Find Full Text PDFPolariton canalization is characterized by intrinsic collimation of energy flow along a single crystalline axis. This optical phenomenon has been experimentally demonstrated at the nanoscale by stacking and twisting van der Waals (vdW) layers of α-MoO, by combining α-MoO and graphene, or by fabricating an h-BN metasurface. However, these material platforms have significant drawbacks, such as complex fabrication and high optical losses in the case of metasurfaces.
View Article and Find Full Text PDFBackground: The impact of intraoperative ventilation on postoperative pulmonary complications is not defined. The authors aimed at determining the effectiveness of protective mechanical ventilation during open abdominal surgery on a modified Clinical Pulmonary Infection Score as primary outcome and postoperative pulmonary function.
Methods: Prospective randomized, open-label, clinical trial performed in 56 patients scheduled to undergo elective open abdominal surgery lasting more than 2 h.