Age-related auditory decline manifests across the animal kingdom, from humans and mice to zebrafish and insects. Sex differences in auditory decline are established for humans, but there is now evidence in mice and even zebrafish. Here, we found sex differences in auditory decline in an insect, the Desert Locust and investigated its biological basis.
View Article and Find Full Text PDFAfter overexposure to loud music, we experience a decrease in our ability to hear (robustness), which usually recovers (resilience). Here, we exploited the amenable auditory system of the desert locust, Schistocerca gregaria, to measure how robustness and resilience depend on age. We found that gene expression changes are dominated by age as opposed to noise exposure.
View Article and Find Full Text PDFOne leading hypothesis for why we lose our hearing as we age is a decrease in ear metabolism. However, direct measurements of metabolism across a lifespan in any auditory system are lacking. Even if metabolism does decrease with age, a question remains: is a metabolic decrease a cause of age-related auditory decline or simply correlative? We use an insect, the desert locust , as a physiologically versatile model to understand how cellular metabolism correlates with age and impacts on age-related auditory decline.
View Article and Find Full Text PDFThe adipokine leptin regulates energy homeostasis through ubiquitously expressed leptin receptors. Leptin has a number of major signaling targets in the brain, including cells of the anterior pituitary (AP). We have previously reported that mice lacking leptin receptors in AP somatotropes display growth hormone (GH) deficiency, metabolic dysfunction, and adult-onset obesity.
View Article and Find Full Text PDF