The synthesis of Cu(core)Pt(shell) model catalysts by the direct electrochemical deposition of Pt on Cu particles is presented. Cu particles with an average diameter of 200 nm have been deposited on glassy-carbon electrodes by double pulse electrodeposition from a copper sulfate solution. Subsequent deposition from a platinum nitrate solution under potential control allows for a high selectivity of the Pt deposition towards Cu.
View Article and Find Full Text PDFA test setup for membrane-electrode-assemblies (MEAs) of proton exchange membrane fuel cells which allows in situ fluorescence x-ray absorption spectroscopy studies of one electrode with safe exclusion of contributions from the counter electrode is described. Interference by the counter electrode is excluded by a geometry including a small angle of incidence (< 6°) between primary beam and electrode layer. The cell has been constructed by introducing just minor modifications to an electrochemical state-of-the-art MEA test setup, which ensures realistic electrochemical test conditions.
View Article and Find Full Text PDFA novel electrochemical method to prepare platinum shells around carbon-supported metal nanoparticles (Ru and Au) by pulsed electrodeposition from solutions containing Pt ions is presented. Shell formation is confirmed by characteristic changes in the cyclic voltammograms, and is further evidenced by monitoring particle growth by transmission electron microscopy as well as by energy-dispersive analysis of X rays (EDX). Scanning electrochemical microscopy and EDX measurements indicate a selective Pt deposition on the metal/carbon catalyst, but not on the glassy carbon substrate.
View Article and Find Full Text PDF