Control over the lateral dimensions of colloidal nanostructures is a complex task which requires a deep understanding of the formation mechanism and reactivity in the corresponding systems. As a result, it provides a well-founded insight to the physical and chemical properties of these materials. In this work, the preparation of quasi-2D methylammonium lead bromide nanostripes and discuss the influence of some specific parameters on the morphology and stability of this material is demonstrated.
View Article and Find Full Text PDFIntroduction: UK Built Environment is currently undergoing a digital transformation, as is happening in the National Health Service (NHS) of England. In this paper, the focus was on the intersection of the two sectors and specifically the potential digital transformation of the NHS Estate. The NHS has developed a strategy for its workforce, to improve staff health and wellbeing, and support equality, diversity, inclusion and the development of existing staff.
View Article and Find Full Text PDFWe explore different strategies to integrate prior domain knowledge into the design of graph neural networks (GNN). Our study is supported by a use-case of estimating the potential energy of chemical systems (molecules and crystals) represented as graphs. We integrate two elements of domain knowledge into the design of the GNN to constrain and regularise its learning, towards higher accuracy and generalisation.
View Article and Find Full Text PDFDiffusion-mediated assembly of octahedral PbS nanocrystals (NCs) in a confined antisolvent environment displays a primary burst nucleation and Ostwald ripening growth of rhombic bcc supercrystals, followed by a secondary seed-based nucleation and oriented attachment growth of triangle fcc supercrystals. As the diffusion proceeds from ethanol across a sharp interface into NC-suspended toluene, a burst nucleation of supercrystal seeds occurs, and such supercrystals are quickly developed into rhombic grains that have a bcc structure. At a critical size of 10 μm, an Ostwald ripening event appears to guide the supercrystal growth.
View Article and Find Full Text PDFNon-toxicity and stability make two-dimensional (2D) bismuth halide perovskites better alternatives to lead-based ones for optoelectronic applications and catalysis. In this work, we synthesize sub-micron size colloidal quasi-2D CsBiI perovskite nanosheets and study their generation and relaxation of charge carriers. Steady-state absorption spectroscopy reveals an indirect bandgap of 2.
View Article and Find Full Text PDFMn-doped semiconductor nanocrystals with tuned location and concentration of Mn ions can yield diverse coupling regimes, which can highly influence their optical properties such as emission wavelength and photoluminescence (PL) lifetime. However, investigation on the relationship between the Mn concentration and the optical properties is still challenging because of the complex interactions of Mn ions and the host and between the Mn ions. Here, atomically flat ZnS nanoplatelets (NPLs) with uniform thickness were chosen as matrixes for Mn doping.
View Article and Find Full Text PDFConspectusDue to the spatial confinement, two-dimensional metal chalcogenides display an extraordinary optical response and carrier transport ability. Solution-based synthesis techniques such as colloidal hot injection and ion exchange provide a cost-effective way to fabricate such low-dimensional semiconducting nanocrystals. Over the years, developments in colloidal chemistry made it possible to synthesize various kinds of ultrathin colloidal nanoplatelets, including wurtzite- and zinc blende-type CdSe, rock salt PbS, black phosphorus-like SnX (X = S or Se), hexagonal copper sulfides, selenides, and even transition metal dichalcogenides like MoS.
View Article and Find Full Text PDFHalide perovskites are promising materials for light-emitting and light-harvesting applications. In this context, two-dimensional perovskites such as nanoplatelets or Ruddlesden-Popper and Dion-Jacobson layered structures are important because of their structural flexibility, electronic confinement, and better stability. This review article brings forth an extensive overview of the recent developments of two-dimensional halide perovskites both in the colloidal and non-colloidal forms.
View Article and Find Full Text PDFCrystallization and growth of anisotropic nanocrystals (NCs) into distinct superlattices were studied in real time, yielding kinetic details and designer parameters for scale-up fabrication of functional materials. Using octahedral PbS NC blocks, we discovered that NC assembly involves a primary lamellar ordering of NC-detached Pb(OA) molecules on the front-spreading solvent surfaces. Upon a spontaneous increase of NC concentration during solvent processing, PbS NCs preferentially self-assembled into an orientation-disordered face-centered cubic (fcc) superlattice, which subsequently transformed into a body-centered cubic (bcc) superlattice with single NC-orientational ordering across individual domains.
View Article and Find Full Text PDFTin sulfide promises very interesting properties such as a high optical absorption coefficient and a small band gap, while being less toxic compared to other metal chalcogenides. However, the limitations in growing atomically thin structures of tin sulfide hinder the experimental exploration of these properties. Due to the flexibility of the colloidal synthesis, it is possible to synthesize very thin and at the same time large nanosheets.
View Article and Find Full Text PDFSolution-processable two-dimensional (2D) semiconductors with chemically tunable thickness and associated tunable band gaps are highly promising materials for ultrathin optoelectronics. Here, the properties of free charge carriers and excitons in 2D PbS nanosheets of different thickness are investigated by means of optical pump-terahertz probe spectroscopy. By analyzing the frequency-dependent THz response, a large quantum yield of excitons is found.
View Article and Find Full Text PDFUltrathin semiconductor nanocrystals (NCs) with at least one dimension below their exciton Bohr radius receive a rapidly increasing attention due to their unique physicochemical properties. These superior properties highly depend on the shape and crystal phase of semiconductor NCs. Here, we demonstrate not only the synthesis of well-defined ultrathin ZnS nanoplatelets (NPLs) with excitonic absorption and emission, but also the shape/phase transformation between wurtzite (WZ) NPLs and zinc blende (ZB) nanorods (NRs).
View Article and Find Full Text PDFHybrid lead halide perovskites with 2D stacking structures have recently emerged as promising materials for optoelectronic applications. We report a method for growing 2D nanosheets of hybrid lead halide perovskites (I, Br and Cl), with tunable lateral sizes ranging from 0.05 to 8 μm and a structure consisting of n stacked monolayers separated by long alkylamines, tunable from bulk down to n = 1.
View Article and Find Full Text PDFQuantum-confined Au nanoclusters exhibit molecule-like properties, including atomic precision and discrete energy levels. The electrical conductivity of Au nanocluster films can vary by several orders of magnitude and is determined by the strength of the electronic coupling between the individual nanoclusters in the film. Similar to quantum-confined, semiconducting quantum dots, the electrical coupling in films is dependent on the size and structure of the Au core and the length and conjugation of the organic ligands surrounding it.
View Article and Find Full Text PDFThe colloidal synthesis of large, thin two-dimensional (2D) nanosheets is fascinating but challenging, since the growth along the lateral and vertical dimensions needs to be controlled independently. In-plane anisotropy in 2D nanosheets is attracting more attention as well. We present a new synthesis for large colloidal single-crystalline SnS nanosheets with the thicknesses down to 7 nm and lateral sizes up to 8 μm.
View Article and Find Full Text PDFColloidal approaches allow for the synthesis of Au nanoclusters (NCs) with atomic precision and sizes ranging from a few to hundreds of atoms. In most of the cases, these processes involve a common strategy of thiol etching of initially polydisperse Au nanoparticles into atomically precise NCs, resulting in the release of Au-thiolate complexes as byproducts. To the best of our knowledge, neither the removal of these byproducts nor the mass spectra in the relevant mass region were shown in previous studies.
View Article and Find Full Text PDFCopolymerization of melamine with 2,4,6-triaminopyrimidine (TAP) in an electrochemically induced polymerization process leads to the formation of molecular doped poly(triazine imide) (PTI). The polymerization is based on the electrolysis of water and evolving radicals during this process. The incorporation of TAP is shown by techniques such as elemental analysis, Fourier transform infrared and NMR spectroscopies, and powder X-ray diffraction, and it is shown that the carbon content can be tuned by the variation of the molar ratio of the two precursors.
View Article and Find Full Text PDFColloidal chemistry of nanomaterials experienced a tremendous development in the last decades. In the course of the journey 0D nanoparticles, 1D nanowires, and 2D nanosheets have been synthesized. They have in common to possess a simple topology.
View Article and Find Full Text PDF2D copper sulfide nanocrystals are promising building blocks of plasmonic materials in the near-infrared (NIR) spectral region. We demonstrate precise shape and size control (hexagonal/triangle) of colloidal plasmonic copper sulfide (covellite) nano-prisms simply by tuning the precursor concentration without the introduction of additional ligands. The ultra-thin 2D nanocrystals possess sizes between 13 and 100 nm and triangular or hexangular shapes.
View Article and Find Full Text PDFPoly(triazine imide) (PTI) is a material belonging to the group of carbon nitrides and has shown to have competitive properties compared to melon or g-CN, especially in photocatalysis. As most of the carbon nitrides, PTI is usually synthesized by thermal or hydrothermal approaches. We present and discuss an alternative synthesis for PTI which exhibits a pH-dependent solubility in aqueous solutions.
View Article and Find Full Text PDFWe present a colloidal synthesis strategy for lead halide nanosheets with a thickness of far below 100 nm. Due to the layered structure and the synthesis parameters the crystals of PbI are initially composed of many polytypes. We propose a mechanism which gives insight into the chemical process of the PbI formation.
View Article and Find Full Text PDFSingle-electron transistors would represent an approach to developing less power-consuming microelectronic devices if room temperature operation and industry-compatible fabrication were possible. We present a concept based on stripes of small, self-assembled, colloidal, metal nanoparticles on a back-gate device architecture, which leads to well-defined and well-controllable transistor characteristics. This Coulomb transistor has three main advantages.
View Article and Find Full Text PDFEmploying the spin degree of freedom of charge carriers offers the possibility to extend the functionality of conventional electronic devices, while colloidal chemistry can be used to synthesize inexpensive and tunable nanomaterials. Here, in order to benefit from both concepts, we investigate Rashba spin-orbit interaction in colloidal lead sulphide nanosheets by electrical measurements on the circular photo-galvanic effect. Lead sulphide nanosheets possess rock salt crystal structure, which is centrosymmetric.
View Article and Find Full Text PDFUltrathin two-dimensional nanosheets raise a rapidly increasing interest due to their unique dimensionality-dependent properties. Most of the two-dimensional materials are obtained by exfoliation of layered bulk materials or are grown on substrates by vapor deposition methods. To produce free-standing nanosheets, solution-based colloidal methods are emerging as promising routes.
View Article and Find Full Text PDFBecause of their potential for chemical functionalization, carbon nanotubes (CNTs) are promising candidates for the development of devices such as nanoscale sensors or transistors with novel gating mechanisms. However, the mechanisms underlying the property changes due to functionalization of CNTs still remain subject to debate. Our goal is to reliably model one possible mechanism for such chemical gating: adsorption directly on the nanotubes.
View Article and Find Full Text PDF