Publications by authors named "Christian Kjaergaard"

Anemia of chronic kidney disease (CKD) is a multifactorial disorder caused by impaired erythropoietin (EPO) production and altered iron homeostasis associated with inflammation. Hypoxia-inducible factor (HIF) is a transcription factor that stimulates erythropoiesis via a coordinated response involving increased EPO production and enhanced iron availability for Hb synthesis. HIF degradation is regulated by HIF-prolyl hydroxylase (HIF-PH) enzymes.

View Article and Find Full Text PDF

Bilirubin oxidases (BODs) belong to the multi-copper oxidase (MCO) family and efficiently reduce O at neutral pH and in physiological conditions where chloride concentrations are over 100 mM. BODs were consequently considered to be Cl resistant contrary to laccases. However, there has not been a detailed study on the related effect of chloride and pH on the redox state of immobilized BODs.

View Article and Find Full Text PDF

Multicopper oxidases (MCOs) utilize an electron shuttling Type 1 Cu (T1) site in conjunction with a mononuclear Type 2 (T2) and a binuclear Type 3 (T3) site, arranged in a trinuclear copper cluster (TNC), to reduce O2 to H2O. Reduction of O2 occurs with limited overpotential indicating that all the coppers in the active site can be reduced via high-potential electron donors. Two forms of the resting enzyme have been observed in MCOs: the alternative resting form (AR), where only one of the three TNC Cu's is oxidized, and the resting oxidized form (RO), where all three TNC Cu's are oxidized.

View Article and Find Full Text PDF

The multicopper oxidases (MCOs) are the family of enzymes that catalyze the 4-electron reduction of O2 to H2O coupled to the four 1-electron oxidations of substrate. In the catalytic cycle electrons are transferred intramolecularly over ∼13 Å from a Type 1 (T1) Cu site that accepts electrons from substrate to a trinuclear Cu cluster (TNC) where O2 is reduced to H2O at rapid rates consistent with turnover (560 s(-1)). The oxygen reduction mechanism for the MCOs is well-characterized, whereas the rereduction is less understood.

View Article and Find Full Text PDF

Strategies for O2 activation by copper enzymes were recently expanded to include mononuclear Cu sites, with the discovery of the copper-dependent polysaccharide monooxygenases, also classified as auxiliary-activity enzymes 9-11 (AA9-11). These enzymes are finding considerable use in industrial biofuel production. Crystal structures of polysaccharide monooxygenases have emerged, but experimental studies are yet to determine the solution structure of the Cu site and how this relates to reactivity.

View Article and Find Full Text PDF

Kinetic measurements on single-turnover processes in laccase established fast type-1 Cu to trinuclear Cu cluster (TNC) intramolecular electron transfer (IET) in the reduction of the native intermediate (NI), the fully oxidized form of the enzyme formed immediately after O-O bond cleavage in the mechanism of O2 reduction. Alternatively, slow IET kinetics was observed in the reduction of the resting enzyme, which involves proton-coupled electron transfer on the basis of isotope measurements. The >10(3) difference between the IET rates for these two processes confirms that the NI, rather than the resting enzyme that has been defined by crystallography, is the fully oxidized form of the TNC in catalytic turnover.

View Article and Find Full Text PDF
Article Synopsis
  • Multicopper oxidases (MCOs) efficiently reduce O2 to H2O through a four-electron transfer process involving a type 1 Cu site and a trinuclear Cu cluster (TNC) comprising type 3 and type 2 Cu centers.
  • The rate-limiting step in this reduction involves a two-electron transfer from T3β and T2 Cu to form a peroxide intermediate, with mutations in first shell ligands affecting reaction speeds.
  • Spectroscopic analysis reveals that mutations alter the geometric and electronic structure of the TNC, impacting its ability to facilitate rapid two-electron transfers, highlighting the importance of specific structural configurations for MCO function.
View Article and Find Full Text PDF

While there is broad agreement on the catalytic mechanism of multicopper oxidases (MCOs), the geometric and electronic structures of the resting trinuclear Cu cluster have been variable, and their relevance to catalysis has been debated. Here, we present a spectroscopic characterization, complemented by crystallographic data, of two resting forms occurring in the same enzyme and define their interconversion. The resting oxidized form shows similar features to the resting form in Rhus vernicifera and Trametes versicolor laccase, characterized by "normal" type 2 Cu electron paramagnetic resonance (EPR) features, 330 nm absorption shoulder, and a short type 3 (T3) Cu-Cu distance, while the alternative resting form shows unusually small A(||) and high g(||) EPR features, lack of 330 nm absorption intensity, and a long T3 Cu-Cu distance.

View Article and Find Full Text PDF

A CotA multicopper oxidase (MCO) from Bacillus pumilus, previously identified as a laccase, has been studied and characterized as a new bacterial bilirubin oxidase (BOD). The 59 kDa protein containing four coppers, was successfully over-expressed in Escherichia coli and purified to homogeneity in one step. This 509 amino-acid enzyme, having 67% and 26% sequence identity with CotA from Bacillus subtilis and BOD from Myrothecium verrucaria, respectively, shows higher turnover activity towards bilirubin compared to other bacterial MCOs.

View Article and Find Full Text PDF

A novel bilirubin oxidase (BOD), from the rice blast fungus Magnaporthe oryzae, has been identified and isolated. The 64-kDa protein containing four coppers was successfully overexpressed in Pichia pastoris and purified to homogeneity in one step. Protein yield is more than 100 mg for 2 L culture, twice that of Myrothecium verrucaria.

View Article and Find Full Text PDF

Cu/O2 intermediates in biological, homogeneous, and heterogeneous catalysts exhibit unique spectral features that reflect novel geometric and electronic structures that make significant contributions to reactivity. This review considers how the respective intermediate electronic structures overcome the spin-forbidden nature of O2 binding, activate O2 for electrophilic aromatic attack and H-atom abstraction, catalyze the 4 e- reduction of O2 to H2O, and discusses the role of exchange coupling between Cu ions in determining reactivity.

View Article and Find Full Text PDF

In this paper, we present a method to directly compare the energy levels of intermediates in enzymatic and inorganic oxygen reduction catalysts. We initially describe how the energy levels of a Pt(111) catalyst, operating at pH = 0, are obtained. By a simple procedure, we then convert the energy levels of cytochrome c oxidase (CcO) models obtained at physiological pH = 7 to the energy levels at pH = 0, which allows for comparison.

View Article and Find Full Text PDF

The multicopper oxidase Fet3p catalyzes the four-electron reduction of dioxygen to water, coupled to the one-electron oxidation of four equivalents of substrate. To carry out this process, the enzyme utilizes four Cu atoms: a type 1, a type 2, and a coupled binuclear, type 3 site. Substrates are oxidized at the T1 Cu, which rapidly transfers electrons, 13 A away, to a trinuclear copper cluster composed of the T2 and T3 sites, where dioxygen is reduced to water in two sequential 2e(-) steps.

View Article and Find Full Text PDF

Lotus japonicus accumulates the hydroxynitrile glucosides lotaustralin, linamarin, and rhodiocyanosides A and D. Upon tissue disruption, the hydroxynitrile glucosides are bioactivated by hydrolysis by specific beta-glucosidases. A mixture of two hydroxynitrile glucoside-cleaving beta-glucosidases was isolated from L.

View Article and Find Full Text PDF