Circular RNAs represent a class of endogenous RNAs that regulate gene expression and influence cell biological decisions with implications for the pathogenesis of several diseases. Here, we disclose a novel gene-regulatory role of circHIPK3 by combining analyses of large genomics datasets and mechanistic cell biological follow-up experiments. Using time-course depletion of circHIPK3 and specific candidate RNA-binding proteins, we identify several perturbed genes by RNA sequencing analyses.
View Article and Find Full Text PDFBiochim Biophys Acta Proteins Proteom
September 2024
Periostin is a matricellular protein known to be alternatively spliced to produce ten isoforms with a molecular weight of 78-91 kDa. Within the extracellular matrix, periostin attaches to cell surfaces to induce signaling via integrin-binding and actively participates in fibrillogenesis, orchestrating the arrangement of collagen in the extracellular environment. In atopic diseases such as atopic dermatitis (AD) and asthma, periostin is known to participate in driving the disease-causing type 2 inflammation.
View Article and Find Full Text PDFCircular RNAs (circRNAs) represent a class of widespread endogenous RNAs that regulate gene expression and thereby influence cell biological decisions with implications for the pathogenesis of several diseases. Here, we disclose a novel gene-regulatory role of circHIPK3 by combining analyses of large genomics datasets and mechanistic cell biological follow-up experiments. Specifically, we use temporal depletion of circHIPK3 or specific RNA binding proteins (RBPs) and identify several perturbed genes by RNA sequencing analyses.
View Article and Find Full Text PDFBackground: Circular RNAs (circRNAs) constitute a largely unexplored source for biomarker discovery in prostate cancer (PC). Here, we characterize the biomarker potential of circRNAs in PC, where the need for novel diagnostic and prognostic tools to facilitate more personalized management is pressing.
Methods: We profiled the transcriptomic landscape of circRNAs in PC by total RNA sequencing of 31 adjacent-normal and 143 tumor samples from localized (radical prostatectomy (RP)) and metastatic PC patients (cohort 1, training).
LARP1 is a key repressor of TOP mRNA translation. It binds the m7Gppp cap moiety and the adjacent 5'TOP motif of TOP mRNAs, thus impeding the assembly of the eIF4F complex on these transcripts. mTORC1 controls TOP mRNA translation via LARP1, but the details of the mechanism are unclear.
View Article and Find Full Text PDFGenome Med
December 2020
Background: Circular RNAs (circRNAs) are stable, often highly expressed RNA transcripts with potential to modulate other regulatory RNAs. A few circRNAs have been shown to bind RNA-binding proteins (RBPs); however, little is known about the prevalence and distribution of these interactions in different biological contexts.
Methods: We conduct an extensive screen of circRNA-RBP interactions in the ENCODE cell lines HepG2 and K562.
Circular RNAs are important for many cellular processes but their mechanisms of action remain poorly understood. Here, we map circRNA inventories of mouse embryonic stem cells, neuronal progenitor cells and differentiated neurons and identify hundreds of highly expressed circRNAs. By screening several candidate circRNAs for a potential function in neuronal differentiation, we find that represses expression of key neuronal markers, suggesting that this molecule negatively regulates neuronal differentiation.
View Article and Find Full Text PDFProg Neuropsychopharmacol Biol Psychiatry
January 2021
Background: Dysregulated microRNAs (miRNAs) in dermal fibroblasts of depressive subjects, indicate biomarker potential and can possibly aid clinical diagnostics. To overcome methodological challenges related to human experiments and fibroblast cultures, we here validate 38 miRNAs previously observed to be dysregulated in human fibroblasts from depressed subjects, in the skin of four distinct rat models of depression.
Methods: In the presented study male rats from the adrenocorticotropic hormone (ACTH) model (n = 10/group), the chronic mild stress model (n = 10/group), Wistar Kyoto/Wistar Hannover rats (n = 10/group), and Flinders Resistant/Flinders Sensitive Line rats (n = 8/group) were included.
Cell proliferation exerts a high demand on protein synthesis, yet the mechanisms coupling the two processes are not fully understood. A kinase and phosphatase screen for activators of translation, based on the formation of stress granules in human cells, revealed cell cycle-associated kinases as major candidates. CDK1 was identified as a positive regulator of global translation, and cell synchronization experiments showed that this is an extramitotic function of CDK1.
View Article and Find Full Text PDFThe expression of short hairpin RNAs (shRNAs) may result in unwanted activity from the co-processed passenger strand. Recent studies have shown that shortening the stem of conventional shRNAs abolishes passenger strand release. These Dicer-independent shRNAs, expressed from RNA polymerase III (Pol III) promoters, rely on Ago2 processing in resemblance to miR-451.
View Article and Find Full Text PDFAs key regulators of gene expression, microRNAs (miRNAs) have emerged as targets in basic experimentation and therapy. Administration of DNA-encoded RNA molecules, targeting miRNAs through base pairing, is one viable strategy for inhibiting specific miRNAs. A naturally occurring circular RNA (circRNA), ciRS-7, serving as a miRNA-7 (miR-7) sponge was recently identified.
View Article and Find Full Text PDFBox C/D snoRNAs constitute a class of abundant noncoding RNAs that associate with common core proteins to form catalytic snoRNPs. Most of these operate in trans to assist the maturation of rRNAs by guiding and catalyzing the 2'-O-methylation of specific nucleotides. Here, we report that the human intron-hosted box C/D snoRNA snoRD86 acts in cis as a sensor and master switch controlling levels of the limiting snoRNP core protein NOP56, which is important for proper ribosome biogenesis.
View Article and Find Full Text PDFThe transcription factor Nrf2 is a critical regulator of inflammatory responses. If and how Nrf2 also affects cytosolic nucleic acid sensing is currently unknown. Here we identify Nrf2 as an important negative regulator of STING and suggest a link between metabolic reprogramming and antiviral cytosolic DNA sensing in human cells.
View Article and Find Full Text PDFThe ribosome is an essential unit of all living organisms that commands protein synthesis, ultimately fuelling cell growth (accumulation of cell mass) and cell proliferation (increase in cell number). The eukaryotic ribosome consists of 4 ribosomal RNAs (rRNAs) and 80 ribosomal proteins (RPs). Despite its fundamental role in every living organism, our present understanding of how higher eukaryotes produce the various ribosome components is incomplete.
View Article and Find Full Text PDFOur genes are post-transcriptionally regulated by microRNAs (miRNAs) inducing translational suppression and degradation of targeted mRNAs. Strategies to inhibit miRNAs in a spatiotemporal manner in a desired cell type or tissue, or at a desired developmental stage, can be crucial for understanding miRNA function and for pushing forward miRNA suppression as a feasible rationale for genetic treatment of disease. For such purposes, RNA polymerase II (RNA Pol II)-transcribed tough decoy (TuD) miRNA inhibitors are particularly attractive.
View Article and Find Full Text PDFAberrant expression of long non-coding RNAs (lncRNAs) has been regarded as a critical component in bladder cancer (BC) and lncRNAs have been associated with BC development and progression although their overall expression and functional significance is still unclear. The aim of our study was to identify novel lncRNAs with a functional role in BC carcinogenesis. RNA-sequencing was used to identify aberrantly expressed lncRNAs in 8 normal and 72 BC samples.
View Article and Find Full Text PDFIt is well established that lncRNAs are aberrantly expressed in cancer where they have been shown to act as oncogenes or tumor suppressors. RNA profiling of 314 colorectal adenomas/adenocarcinomas and 292 adjacent normal colon mucosa samples using RNA-sequencing demonstrated that the snoRNA host gene 16 (SNHG16) is significantly up-regulated in adenomas and all stages of CRC. SNHG16 expression was positively correlated to the expression of Wnt-regulated transcription factors, including ASCL2, ETS2, and c-Myc.
View Article and Find Full Text PDFProcessing bodies (PBs) are conserved cytoplasmic aggregations of translationally repressed mRNAs assembled with mRNA decay factors. The aggregation of mRNA-protein (mRNP) complexes into PBs involves interactions between low-complexity regions of protein components of the mRNPs. In Saccharomyces cerevisiae, the carboxy (C)-terminal Q/N-rich domain of the Lsm4 subunit of the Lsm1-7 complex plays an important role in PB formation, but the C-terminal domain of Lsm4 in most eukaryotes is an RGG domain rather than Q/N rich.
View Article and Find Full Text PDFMicroRNAs (miRNAs) are short (∼22 nucleotides) regulators of gene expression acting by direct base pairing to 3'-UTR target sites in messenger RNAs. Mature miRNAs are produced by two sequential endonucleolytic cleavages facilitated by Drosha in the nucleus and Dicer in the cytoplasm. A subclass of miRNAs, termed mirtrons, derives from short introns and enters the miRNA biogenesis pathway as Dicer substrates.
View Article and Find Full Text PDFCircRNAs are novel members of the non-coding RNA family. For several decades circRNAs have been known to exist, however only recently the widespread abundance has become appreciated. Annotation of circRNAs depends on sequencing reads spanning the backsplice junction and therefore map as non-linear reads in the genome.
View Article and Find Full Text PDFMyotonic dystrophy type 1 is caused by abnormal expansion of a CTG-trinucleotide repeat in the gene encoding Dystrophia Myotonica Protein Kinase (DMPK), which in turn leads to global deregulation of gene expression in affected individuals. The transcribed mRNA contains a massive CUG-expansion in the 3' untranslated region (3'UTR) facilitating nucleation of several regulatory RNA-binding proteins, which are thus unable to perform their normal cellular function. These CUG-expanded mRNA-protein aggregates form distinct, primarily nuclear foci.
View Article and Find Full Text PDFDuring recent years, miRNAs have been shown to play important roles in the regulation of gene expression. Accordingly, much effort has been put into the discovery of novel uncharacterized miRNAs in various organisms. miRNAs are structurally defined by a hairpin-loop structure recognized by the two-step processing apparatus, Drosha and Dicer, necessary for the production of mature ∼ 22-nucleotide miRNA guide strands.
View Article and Find Full Text PDFMyotonic dystrophy type 1 (DM1) is caused by CUG triplet expansions in the 3' UTR of dystrophia myotonica protein kinase (DMPK) messenger ribonucleic acid (mRNA). The etiology of this multi-systemic disease involves pre-mRNA splicing defects elicited by the ability of the CUG-expanded mRNA to 'sponge' splicing factors of the muscleblind family. Although nuclear aggregation of CUG-containing mRNPs in distinct foci is a hallmark of DM1, the mechanisms of their homeostasis have not been completely elucidated.
View Article and Find Full Text PDFDuring recent years, it has become clear that regulation of mRNA stability is an important event in the control of gene expression. The stability of a large class of mammalian mRNAs is regulated by AU-rich elements (AREs) located in the mRNA 3' UTRs. mRNAs with AREs are inherently labile but as a response to different cellular cues they can become either stabilized, allowing expression of a given gene, or further destabilized to silence their expression.
View Article and Find Full Text PDF