Publications by authors named "Christian Jaulin"

Neonicotinoids, a relatively new widely used class of insecticide is used in agriculture to control insect populations. We examined the capacity of ancestral exposure to the neonicotinoid thiacloprid (thia) to induce transgenerational effects on thyroid tissue. Pregnant outbred Swiss female mice were exposed to thia at embryonic days E6.

View Article and Find Full Text PDF

Sister chromatid cohesion is a multi-step process implemented throughout the cell cycle to ensure the correct transmission of chromosomes to daughter cells. Although cohesion establishment and mitotic cohesion dissolution have been extensively explored, the regulation of cohesin loading is still poorly understood. Here, we report that the methyltransferase NSD3 is essential for mitotic sister chromatid cohesion before mitosis entry.

View Article and Find Full Text PDF
Article Synopsis
  • The study aimed to evaluate the genetic and epigenetic impacts of Bisphenol A (BPA) exposure in young males from a Spanish birth cohort and in human cell cultures.
  • Methods involved analyzing DNA methylation patterns, repeat number variations, and specific protein markers in both adolescents' blood samples and HeLa cells exposed to BPA.
  • Results indicated that high BPA exposure correlated with increased copy numbers of certain genomic regions, reduced DNA methylation at various gene promoters, and altered expression of genes involved in DNA repair and telomere maintenance.
View Article and Find Full Text PDF

Background: Panobinostat (PB), a histone deacetylase (HDAC) inhibitor drug, is clinically used in the treatment of cancers. We investigated the effects of PB on murine ovarian functions in embryos and adult animals.

Methods: C57BL/6J mice were treated with 5 mg/kg PB on alternate days from embryonic day (E) 6.

View Article and Find Full Text PDF

Environmental factors can induce detrimental consequences into adulthood life. In this study, we examined the epigenetic effects induced by in utero chlordecone (CD) exposure on human male cord blood as well as in blood-derived Ke-37 cell line. Genome-wide analysis of histone H3K4me3 distribution revealed that genes related to chromosome segregation, chromatin organization, and cell cycle have altered occupancy in their promoters.

View Article and Find Full Text PDF

Sustained spindle tension applied to sister centromeres during mitosis eventually leads to uncoordinated loss of sister chromatid cohesion, a phenomenon known as "cohesion fatigue." We report that Aurora A-dependent phosphorylation of serine 7 of the centromere histone variant CENP-A (p-CENP-AS7) protects bioriented chromosomes against cohesion fatigue. Expression of a non-phosphorylatable version of CENP-A (CENP-AS7A) weakens sister chromatid cohesion only when sister centromeres are under tension, providing the first evidence of a regulated mechanism involved in protection against passive cohesion loss.

View Article and Find Full Text PDF

Bloom Syndrome (BS) is a rare genetic disease characterized by high levels of chromosomal instability and an increase in cancer risk. Cytidine deaminase (CDA) expression is downregulated in BS cells, leading to an excess of cellular dC and dCTP that reduces basal PARP-1 activity, compromising optimal Chk1 activation and reducing the efficiency of downstream checkpoints. This process leads to the accumulation of unreplicated DNA during mitosis and, ultimately, ultrafine anaphase bridge (UFB) formation.

View Article and Find Full Text PDF

The cyclin-dependent kinase CDK11(p58) is specifically expressed at G2/M phase. CDK11(p58) depletion leads to different cell cycle defects such as mitotic arrest, failure in centriole duplication and centrosome maturation, and premature sister chromatid separation. We report that upon CDK11 depletion, loss of sister chromatid cohesion occurs during mitosis but not during G2 phase.

View Article and Find Full Text PDF

Cornelia de Lange syndrome (CdLS) is a dominantly inherited congenital malformation disorder, caused by mutations in the cohesin-loading protein NIPBL for nearly 60% of individuals with classical CdLS, and by mutations in the core cohesin components SMC1A (~5%) and SMC3 (<1%) for a smaller fraction of probands. In humans, the multisubunit complex cohesin is made up of SMC1, SMC3, RAD21 and a STAG protein. These form a ring structure that is proposed to encircle sister chromatids to mediate sister chromatid cohesion and also has key roles in gene regulation.

View Article and Find Full Text PDF

Centromeres are specialized chromosome domains that control chromosome segregation during mitosis, but little is known about the mechanisms underlying the maintenance of their integrity. Centromeric ultrafine anaphase bridges are physiological DNA structures thought to contain unresolved DNA catenations between the centromeres separating during anaphase. BLM and PICH helicases colocalize at these ultrafine anaphase bridges and promote their resolution.

View Article and Find Full Text PDF

Calpains form a family of Ca(2+)-dependent cysteine proteases involved in diverse cellular processes. However, the specific functions of each calpain isoform remain unknown. Recent reports have shown that calpain 2 (Capn2) is essential for cell viability.

View Article and Find Full Text PDF

We describe here the role of histone deacetylase 3 (HDAC3) in sister chromatid cohesion and the deacetylation of histone H3 Lys 4 (H3K4) at the centromere. HDAC3 knockdown induced spindle assembly checkpoint activation and sister chromatid dissociation. The depletion of Polo-like kinase 1 (Plk1) or Aurora B restored cohesion in HDAC3-depleted cells.

View Article and Find Full Text PDF

Histone deacetylase inhibitors (HDACIs) are a promising new class of anticancer drugs. However, their mechanism of action has not been fully elucidated. Most studies have investigated the effect of HDACIs on the regulation of gene transcription.

View Article and Find Full Text PDF

Histone deacetylase inhibitors (HDACI) are powerful antiproliferative drugs, and are currently undergoing clinical trials as antitumor agents. It would be valuable for both cancer therapy and our knowledge of basic cellular processes to understand the mechanisms by which HDACIs block cell proliferation. Most current models postulate that HDACIs allow the reexpression of tumor suppressor genes silenced in cancer cells.

View Article and Find Full Text PDF

Bloom syndrome (BS) is a rare human autosomal recessive disorder characterized by marked genetic instability associated with greatly increased predisposition to a wide range of cancers affecting the general population. BS arises through mutations in both copies of the BLM gene which encodes a 3'-5' DNA helicase identified as a member of the RecQ family. Several studies support a major role for BLM in the cellular response to DNA damage and stalled replication forks.

View Article and Find Full Text PDF

Chromosome condensation is thought to be an essential step for the faithful transmission of genetic information during cellular division or gamete formation. The folding of DNA into metaphase chromosomes and its partition during the cell cycle remains a fundamental cellular process that, at the molecular level, is poorly understood. Particularly, the role of histone deacetylase (HDAC) activities in establishing and maintaining meiotic metaphase chromosome condensation has been little documented.

View Article and Find Full Text PDF

Bloom's syndrome is a rare human autosomal recessive disorder that combines a marked genetic instability and an increased risk of developing all types of cancers and which results from mutations in both copies of the BLM gene encoding a RecQ 3'-5' DNA helicase. We recently showed that BLM is phosphorylated and excluded from the nuclear matrix during mitosis. We now show that the phosphorylated mitotic BLM protein is associated with a 3'-5' DNA helicase activity and interacts with topoisomerase III alpha.

View Article and Find Full Text PDF