Publications by authors named "Christian Jacome-Galarza"

We found that protease-activated receptor 1 (PAR1) was transiently induced in cultured osteoclast precursor cells. Therefore, we examined the bone phenotype and response to resorptive stimuli of PAR1-deficient (knockout [KO]) mice. Bones and bone marrow-derived cells from PAR1 KO and wild-type (WT) mice were assessed using microcomputed tomography, histomorphometry, in vitro cultures, and RT-PCR.

View Article and Find Full Text PDF

Osteoclasts are multinucleated giant cells that resorb bone, ensuring development and continuous remodelling of the skeleton and the bone marrow haematopoietic niche. Defective osteoclast activity leads to osteopetrosis and bone marrow failure, whereas excess activity can contribute to bone loss and osteoporosis. Osteopetrosis can be partially treated by bone marrow transplantation in humans and mice, consistent with a haematopoietic origin of osteoclasts and studies that suggest that they develop by fusion of monocytic precursors derived from haematopoietic stem cells in the presence of CSF1 and RANK ligand.

View Article and Find Full Text PDF

The pathophysiology of neurodegenerative diseases is poorly understood and there are few therapeutic options. Neurodegenerative diseases are characterized by progressive neuronal dysfunction and loss, and chronic glial activation. Whether microglial activation, which is generally viewed as a secondary process, is harmful or protective in neurodegeneration remains unclear.

View Article and Find Full Text PDF

Inflammation triggers the differentiation of Ly6C monocytes into microbicidal macrophages or monocyte-derived dendritic cells (moDCs). Yet, it is unclear whether environmental inflammatory cues control the polarization of monocytes toward each of these fates or whether specialized monocyte progenitor subsets exist before inflammation. Here, we have shown that naive monocytes are phenotypically heterogeneous and contain an NR4A1- and Flt3L-independent, CCR2-dependent, Flt3CD11cMHCIIPU.

View Article and Find Full Text PDF

Tissue-resident macrophages support embryonic development and tissue homeostasis and repair. The mechanisms that control their differentiation remain unclear. We report here that erythro-myeloid progenitors in mice generate premacrophages (pMacs) that simultaneously colonize the whole embryo from embryonic day 9.

View Article and Find Full Text PDF

Continuous parathyroid hormone (PTH) blocks its own osteogenic actions in marrow stromal cell cultures by inducing Cox2 and receptor activator of nuclear factor κB ligand (RANKL) in the osteoblastic lineage cells, which then cause the hematopoietic lineage cells to secrete an inhibitor of PTH-stimulated osteoblast differentiation. To identify this inhibitor, we used bone marrow macrophages (BMMs) and primary osteoblasts (POBs) from WT and Cox2 knock-out (KO) mice. Conditioned medium (CM) from RANKL-treated WT, but not KO, BMMs blocked PTH-stimulated cAMP production in POBs.

View Article and Find Full Text PDF

Excessive bone resorption is the cause of several metabolic bone diseases including osteoporosis. Thus, identifying factors that can inhibit osteoclast formation and/or activity may define new drug targets that can be used to develop novel therapies for these conditions. Emerging evidence demonstrates that the master regulator of hematopoiesis, Runx1, is expressed in preosteoclasts and may influence skeletal health.

View Article and Find Full Text PDF

Cathepsin K (CatK) is a lysosomal cysteine protease necessary for bone resorption by osteoclasts (OCs), which originate from myeloid hematopoietic precursors. CatK-deficient (CatK(-/-) ) mice show osteopetrosis due to defective resorption by OCs, which are increased in number in these mice. We investigated whether genetic ablation of CatK altered the number of hematopoietic stem cells (HSCs) and OC precursor cells (OCPs) using two mouse models: CatK(-/-) mice and a knock-in mouse model in which the CatK gene (ctsk) is replaced by cre recombinase.

View Article and Find Full Text PDF

Osteoclasts are specialized bone-resorbing cells that derive from monocyte precursors. We have identified three populations of cells with high osteoclastogenic potential in murine bone marrow, which expressed the phenotype B220(-) CD3(-) CD11b(-/low) CD115(+) and either CD117(hi), CD117(intermediate), or CD117(low). We have evaluated these populations for their ability to also generate macrophages and dendritic cells.

View Article and Find Full Text PDF

Parathyroid hormone (PTH) increases both the number of osteoclast in bone and the number of early hematopoietic stem cells (HSCs) in bone marrow. We previously characterized the phenotype of multiple populations of bone marrow cells with in vitro osteoclastogenic potential in mice. Here we examined whether intermittent administration of PTH influences these osteoclast progenitor (OCP) populations.

View Article and Find Full Text PDF