Publications by authors named "Christian J Ketchum"

(Re)Building a Kidney is a National Institute of Diabetes and Digestive and Kidney Diseases-led consortium to optimize approaches for the isolation, expansion, and differentiation of appropriate kidney cell types and the integration of these cells into complex structures that replicate human kidney function. The ultimate goals of the consortium are two-fold: to develop and implement strategies for engineering of replacement kidney tissue, and to devise strategies to stimulate regeneration of nephrons to restore failing kidney function. Projects within the consortium will answer fundamental questions regarding human gene expression in the developing kidney, essential signaling crosstalk between distinct cell types of the developing kidney, how to derive the many cell types of the kidney through directed differentiation of human pluripotent stem cells, which bioengineering or scaffolding strategies have the most potential for kidney tissue formation, and basic parameters of the regenerative response to injury.

View Article and Find Full Text PDF

The National Institute of Diabetes and Digestive and Kidney Diseases-supported Kidney Research National Dialogue asked the scientific community to formulate and prioritize research objectives that would improve our understanding of kidney function and disease; >1600 participants from >30 countries posted >300 ideas and >500 comments covering all areas of kidney research. Smaller groups of investigators interrogated the postings and published a series of commentaries in CJASN. Additional review of the entire series identified six cross-cutting themes: (1) increase training and team science opportunities to maintain/expand the nephrology workforce, (2) develop novel technologies to assess kidney function, (3) promote human discovery research to better understand normal and diseased kidney function, (4) establish integrative models of kidney function to inform diagnostic and treatment strategies, (5) promote interventional studies that incorporate more responsive outcomes and improved trial designs, and (6) foster translation from clinical investigation to community implementation.

View Article and Find Full Text PDF

Kidney disease is a significant medical and public health problem. The National Institute of Diabetes and Digestive and Kidney Diseases recently asked the community to identify research objectives, which, if addressed, could improve understanding of basic kidney function and aid in prevention, treatment, and reversal of kidney disease. The Kidney Research National Dialogue invited interested parties to submit, discuss, and prioritize ideas using an interactive website; 1600 participants posted more than 300 ideas covering all areas of kidney disease, including the cystic kidney diseases.

View Article and Find Full Text PDF

The National Institute of Diabetes and Digestive and Kidney Diseases-supported Kidney Research National Dialogue (KRND) asked the scientific community to formulate and prioritize research objectives that would improve our understanding of kidney function and disease. Several high-priority objectives for diabetic nephropathy were identified in data and sample collection, hypothesis generation, hypothesis testing, and translation promotion. The lack of readily available human samples linked to comprehensive phenotypic, clinical, and demographic data remains a significant obstacle.

View Article and Find Full Text PDF

The National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK) asked the scientific community to formulate and prioritize research objectives to improve understanding of kidney function and disease. The Kidney Research National Dialogue welcomed all interested parties to submit, discuss, and prioritize ideas via an interactive website. More than 1600 participants posted approximately 300 ideas and assigned them to 12 topic areas (AKI, CKD, diabetic nephropathy, National Kidney Disease Education Program/translation, ESRD/dialysis, GN/inflammation, hypertension, normal biology/development/physiology, polycystic kidney disease, training, transplantation, other).

View Article and Find Full Text PDF

The cystic fibrosis transmembrane conductance regulator (CFTR) functions in vivo as a cAMP-activated chloride channel. A member of the ATP-binding cassette superfamily of membrane transporters, CFTR contains two transmembrane domains (TMDs), two nucleotide-binding domains (NBDs), and a regulatory (R) domain. It is presumed that CFTR couples ATP hydrolysis to channel gating, and as a first step in addressing this issue directly, we have established conditions for purification of biochemical quantities of human CFTR expressed in Sf9 insect cells.

View Article and Find Full Text PDF

The cystic fibrosis transmembrane conductance regulator (CFTR), a member of the ATP-binding cassette superfamily, is a cAMP-activated chloride channel. CFTR contains two transmembrane domains (TMDs), two nucleotide-binding domains (NBDs), and a regulatory (R) domain. We found that whole-cell CFTR-dependent Cl- currents in Xenopus laevis oocytes were sensitive to HgCl(2), suggesting that modification of endogenous cysteines alters channel activity.

View Article and Find Full Text PDF