Publications by authors named "Christian J Garcia"

A customized digital image correlation (DIC) system was implemented to monitor the strain produced in a cold-rolled AL-6XN stainless steel plate, 3.0 mm thick, subjected to quasi-static and cyclic loading tests. A comparison of the DIC strain measurements was made against those provided by conventional extensometers.

View Article and Find Full Text PDF

The localized compressive deformation (LCD) effect generated by an indentation process at the crack tip on the fatigue crack growth of the 7075-T651 aluminum alloy is reported. Eccentrically loaded single-edge crack tension specimens (ESE(T)) were pre-cracked at a crack length of about 20 mm by applying a constant amplitude fatigue loading. Subsequently, the LCD process was performed by using a semi-spherical indenter with a radius of 16 mm to compress the crack tip zone at different forces (5.

View Article and Find Full Text PDF

Several subunits in the matrix domain of mitochondrial complex I (CI) have been posited to be redox sensors for CI, but how elevated levels of reactive oxygen species (ROS) impinge on CI assembly is unknown. We report that genetic disruption of the mitochondrial NADPH-generating enzyme, isocitrate dehydrogenase 2 (IDH2), in flight muscles results in elevated ROS levels and impairment of assembly of the oxidative phosphorylation system (OXPHOS). Mechanistically, this begins with an inhibition of biosynthesis of the matrix domain of CI and progresses to involve multiple OXPHOS complexes.

View Article and Find Full Text PDF

Because old age is associated with defects in circadian rhythm, loss of circadian regulation is thought to be pathogenic and contribute to mortality. We show instead that loss of specific circadian clock components Period (Per) and Timeless (Tim) in male Drosophila significantly extends lifespan. This lifespan extension is not mediated by canonical diet-restriction longevity pathways but is due to altered cellular respiration via increased mitochondrial uncoupling.

View Article and Find Full Text PDF

The flight muscles of Drosophila are highly enriched with mitochondria, but the mechanism by which mitochondrial complex I (CI) is assembled in this tissue has not been described. We report the mechanism of CI biogenesis in Drosophila flight muscles and show that it proceeds via the formation of ∼315, ∼550, and ∼815 kDa CI assembly intermediates. Additionally, we define specific roles for several CI subunits in the assembly process.

View Article and Find Full Text PDF